
10. Quantum Mechanical Markov Processes 

Quantum mechanics, s ince the very early times in the 1920's, has been recognised 
as a description of the world which contains an essentially statistical aspect. Hence, 
all quantum mechanics must be regarded as being some kind of stochastic process. 
However, what is essentially unique to quantum mechanics is the description in 
terms of complex probability amplitudes, the square of whose modulus gives the 
actual probability of occurrence of an event. 

The formulation of a proper quantum mechanical probability theory, or of 
quantum mechanics in terms of appropriately defined stochastic processes in this 
generalised probability theory, is not the aim of this chapter. What is of interest is 
the introduction of the reader to the rather fascinating world which straddles the 
boundaries of quantum and classical probability theory. This world is the realm of 
quantum optics and quantum electronics, where there are statistical aspects arising 
from the intrinsic quantum nature of the system, as well as fluctuations arising 
from thermal effects. We shall show how the quantum mechanics of optical systems 
can be related closely to Markov jump processes in a suitably generalised form, 
which can themselves very frequently be related by means of what are known as 
P-representations or otherwise, as phase-space methods, to diffusion processes in the 
complex plane. These diffusion processes can describe quasiprobabilities which 
may be negative or complex, or they may define genuine positive probabilities. The 
situation is very similar to that of the Poisson representation of Sect. 7.7 which is 
itself, in fact, a restricted form of P-representation. 

We will formulate this chapter as follows. We first outline the quantum 
mechanics of the harmonic oscillator and introduce the concept of coherent states, 
which are central to the task. We then define a quantum Markov process and 
show how generalised Master equations can be derived for these, in a manner 
similar to that of the adiabatic elimination methods of Chap. 6. From these 
generalised Master equations we can sometimes develop ordinary birth-death 
Master equations, and sometimes, by using P-representations, we can develop 
Fokker-Pianck equations. Both methods allow us to apply all the apparatus of 
classical stochastic processes to these quantum mechanical systems. 

10.1 Quantum Mechanics of the Harmonic Oscillator 

We describe the Harmonic oscillator in terms of creation and destruction operators 
a+ and a which satisfy the commutation relations 

[a, a+] = aa+ - a+ a = l (IO. l . l ) 
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and from which it can be shown that there are eigenstates In) of a+ a such that 

a+aln) = nln) n = 0, 1 ,2,3, . . .  ( 10. 1 .2) 

aln> = .Vnln- l) ( 10. 1 . 3) 
a+ In) = .Vn + l In+ l) 

and 

(nlm) = �m.n • ( 10. 1 .4) 

The operator N is defined by 

( 10. 1 . 5) 

and is known as the number operator since from (10. 1 .2), its eigenvalues are the 
integers n. 

The Harmonic oscillator itself is defined by the Hamiltonian 

where ( 10. 1 .6) 

h = 21th ( 10. 1 .  7) 

is Planck's constant and w is a frequency. The eigenstates of Hare In) of course, 

and the eigenvalues of H are 

En = (n + !)liw . (10. 1 .8) 

Dynamics is introduced by Schrodinger's equation which determines the time 
development of any physical state I A, t ). 

It takes the well known form 

HIA, t) = ilia,IA. t) . ( 10. 1 .9) 

The orthonormality property ( 10. 1 .4) means that we can expand any state in terms 
of the energy eigenstates In), 

lA, t) = :E In) (niA, t ) ( 10.1. 10) 
n 

and hence, 

iha,l A, t) = ih :E I n)a,(n I A, t) 
n 

l (10. 1 .1 1 )  = :E Hln) (niA, t ) 
n 

= :E (n + t)hwln) (niA, t) 
n 
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so that 

(njA, t) = e-1Enth'l(njA, 0) 

= e-l<n+Iiz>w• (njA, 0). 
(10.1.12) 

Hence, the time development of an arbitrary state is now completely determined. 

10.1.1 Interaction with an External Field 

A semiclassical problem is that of the interaction of the harmonic oscil lator with 
an external field. Without going into the physics too deeply, we simply state that 
th is is done by modifying the Hamiltonian (10.1.6) to 

H(a) = [(a+a + t)- (aa+ + a*a) + jaj2]1iw (10.1.13) 

where a is a complex number. The three parts may be regarded, respectively, as 
the harmonic oscillator energy, the interaction energy between the driving field 
a and the oscillator, and finally the (constant) energy of the driving field. 

H(a) can be advantageously rewritten : 

H(a) = ftw[(a - a)+(a - a) + tJ . (10.1.14) 

It is obvious that the operators (a - a )+ and (a - a) obey the same commutation 
relation as a+ and a, since a is a mere complex constant. Hence, the energy eigens­
tates have the same form, since the existence of states In) follows from the 
commutation relation only. 

Equation (10.1.3) can be used to define the ground state or vacuum state, I 0) 
of a+ a by 

ajO) = 0. (10.1.15) 

The corresponding equation for the shifted operators (a - a)+, (a - a) is 

aja) = aja). (10. l. l6) 

We can check from (10.1.3) that a solution for I a) is 

"' an 
Ia) = exp (-!lal2) � v'li!ln) (10.1.17) 

where the precise factor exp ( - t I a j2) is chosen so that 

(aja) = I. ( 10 .1 .18) 

The states I a) were devised by Glauber [10.1], and are known as coherent states. 
When the harmonic oscillator is regarded as a model of the radiation field in a 
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single-mode system, the coherent state can be regarded as a quantum mechanical 
state which approaches a classical state. 

The energy eigenstates of the Hamiltonian H(a) will now be ln;a) and will 
have the same properties as (10.1.2-4) but are written in terms of the shifted opera­
tors (a - a)+ and (a - a). 

10.1.2 Properties of Coherent States 

We l ist the most important properties; no proof is given if the result is a simple 
matter of substitution of definitions. 

� a" 
a) Definition: I a) = exp (- t I a r�> :E ,- In) . .. �o -v n! 

b) Scalar Product : (alP)= exp (a*P- tlal2- t1PI2) 

c) Completeness Formula 

Here, 

a= ax+ ia.l'' 
d2a = da,.da¥ 

(10.1. 1 9) 

(10. 1 .20) 

(10. 1 .21) 

(10.1.22) 

(10.1.23) 

and the integral is over the whole complex plane. We prove this. For, if I A) is 
an arbitrary vector, then write 

IA>=:EA,In> , 

so that 

! f d2ala> (alA)= ! :E f A,ja) (ajn)d2a. 
n 

Substitute (I 0.1.19) and change to polar coordinates by 

a= re16 

Hence, 

( 10. 1 .25) = ! :E fA,e-'2r"+m e1<m-,l6(n! m!)-112jm)r dr dO 
m., 

= 2 :E f A,e-'2r2"+1(n !)-11 n) dr 
n 

( 10. 1 .24) 

( 10. 1 .25) 

( 10. 1 .26) 

( 10. 1 .27) 

( 10.1.28) 
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where we used 

2o = j_ I d() eHm-n> 9 • n.m 7t 

Now noting 
00 
I dr e-'2r2.n+l = n t/2 , 
0 

we find 

( 10. 1 .25) = 2:; An ln) = lA) · n 

( 10 . 1 .29) 

( 10. 1 .30) 

( 10. 1 . 3 1 )  

Formulae ( 10. 1 .2 1 ,22) together indicate that the coherent states are not orthogonal 
for different a and p, and that since there is a factor l/7t in front of the integral 
( 10. 1 .22) the coherent states are overcomplete [in fact, for any r, ( 10. 1 . 1 9) shows 
that we can write 

I n) = exp (trZ)r-n .y' n! I d() e-in9 1 a) ( 10. 1 .32) 

which indicates that the states for any fixed r = I a I are complete]. This overcom­
pleteness is, however, not a disadvantage because of the very simple connection 
between coherent states and the physics of classical fields, and because of the fact 
that the Bargmann states, defined by 

( 10. 1 .33) 

are analytic functions of a. This property is very important in what follows. 
d) Expansion of Arbitrary States in Terms of Coherent States 
Consider an arbitrary state If). Then using the completeness relation, ( 10. 1 .22) 

If) = � I d2a I a) f(a*) exp(- t I a 12) , 

where 

f(a*) = (a If) exp (t I a 12) = (all/) 

(10.1.34) 

(10. 1 .35) 

is an analytic function of a*. With this proviso, the expansion ( 10. I .34) is unique. 
If functions of both a* and a are permitted, the expansion is no longer unique, 
as Glauber shows. 

The scalar product of two states 1 J 1 and I g) is straightforwardly shown 
to be 

(glf) = ! J d2a [g(a*)]*f(a*) e-lal• ( 10.1.36) 
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which is obviously a Hilbert space of analytic functions. It provides, in fact, the 
soundest mathematical starting point for the study of the harmonic oscillator, 
the creation destruction operators and all the formalism of this chapter. 
e) Expansion of an Operator in Coherent States 
Consider any operator T in the quantum Hilbert space. Using the identity resolu­
tion twice, 

T = J. T·l = �2 
f dZad2{J la)(al TlfJ)(fJI 

= �2 
f d2ad2{Jia)({JI T(a*, {J) exp(-!l al 2- !IPI2) 

where 

T(a*, {J) = exp (t lal2 + ! IPI2)(al TIP> 

= (allTIIP> 

(10.1.37) 

( 10.1.38) 

and from the analyticity of the states lla), 11/J), we see that T(a*, {J) is an an­
alytic function of a* and p, and, with this proviso, is unique. Notice, for example, 
that if 

then 

T(a*, {J) = (aj(a+)
m(a")l fJ) exp (tlal 2 + !IPI2) 

= (a*)m({J)"(aj{J) exp(tlal2 + !IPI2) 

= (a*)m(fJ)" exp(a*{J). 

(10.1.39) 

j (10.1.40) 

f) Any Operator T is Determined by Its Expectation in all Coherent States 
For 

n, m 

so that 

o" am 
(n I Tl m) = v' n !m! oa*" aam (eaa* (a I Tl a)) . (10.1.41) 

The derivatives are formal derivatives and, as in analytic function theory, are to be 
interpreted as 

a= x + iy 

(10.1.42) 
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in which case, (n I Tl m) are the combinations of coefficients of power series in real 
variables x andy. 
g) Coherent States are Eigenstates of a 

Namely, 

ala) =ala) 

and 

(ala+= (ala* 

( 10. 1 .43) 

which are proved directly from the definition and was the original basis for investi­
gating them. In evaluating matrix elements, normal products of operators in which 
all destruction operators stand to the right of creation operators, are useful . Thus, 

(ala+aa+IP> = (ala+a+a + a+[a, a+]IP> 

= (ala+a+a+a+IP> 

= (a*2P + a*}(aiP) . ] ( 10. 1 .44) 

The symbol : : around an expression means that it is to be considered a normal 
product : thus, 

( 10. 1 .45) 

b) Poissonian Number Distribution of Coherent States 
The state In) is known as an "n quantum state" since its energy is nliw more than 
that of the vacuum I 0) , the zero quantum state. In quantum mechanics, therefore, 
the probability of observing n quanta in a coherent state I a) i s 

I a• jz 
Pa(n) = l(nla)l2= exp (- !a2)

.;
­
n!l 

- e-lal'lal2• - n! 

which is a Poisson distribution with mean jaj2• 

( 10. 1 .46) 

( 10. 1 .47) 

Since the number n corresponds to the eigenvalue of the number operator N, 
we have 

(N) = (aiNia) = :EnP(n) = lal2 
n 

(N2) - (aja+aa+ala) 

Hence, 

= (aja+a+aa + a+[a, a+]ala) 

= lal4 + lal2• 

( 10. 1 .48) 
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(N(N-1)) = 1«14 = (N)2 (10.1.49) 

as required for a Poisson. The Poissonian nature of the probability distribution 
of quanta in a coherent state is what provides the link with the Poisson representa­
tion. 

10.2 Density Matrix and Probabilities 

The usual quantum mechanical formula, that the mean of a quantity M in a state 
I '1/) is given by 

( M) = ( 'I'IMI'I'), (10.2.1) 

provides only for experiments in which the identical quantum state is measured 
repeatedly. A more usual possibility is that, due to the random nature of state 
preparation, which may arise from thermal effects or simply from inadequate 
preparation apparatus, we measure means in different states I '1/ .. ) each time we do 
a measurement. Then in this case, if each state occurs with probability P(a), this 
probability not arising from quantum effects but simply arising from the random­
ness of state preparation, the measured mean is 

( M) = 2; P(a)( 'I' .. IMI'I' .. ) . (10.2 .2) 

One now introduces the density matrix (or operator) p by 

p = :E P(a)l'l/ .. )('1' .. 1 (10.2.3) 
" 

through which 

( M) = Tr {pM} . (l 0.2.4) 

Here, for any operator B, we define the trace operation Tr by 

Tr {B} = :E (niBin) (10.2.5) 
n 

so that 

Tr {p M} = 2; P(a)(ni'I/ .. )('1/ .. IMin) 

n,a 

= 2; P(a)('l/., 1 Ml '1' .. ) 
" 

= (M) . 

An important property of the trace is its invariance under cyclic permutations of 
factors so that 
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Tr {p M} = Tr {Mp} (10.2.6) 

Tr {ABCD} = Tr {BCDA}, etc. ( 10.2.7) 

Important Density Matrix Properties : 

i) Tr{p} = I 

for 

Tr {p } = :EPa(ll'alll'a) =:EPa= I. 
II D 

ii) p is positive semidefinite; for any state 1 A), 

(AjpjA) = :EPal(All!la)l2 � 0 .  

( 10.2.8) 

( I0.2.9) 

( 10.2. 10) 

iii) If p corresponds to a pure state, then p2 = p and conversely, for a pure state, 
P" = o"·"o for some a0, so that 

Conversely, consider 

This equals p only if 

PaPb(l/loll/lb) = 0 

r;('Polll'a) = p" 

But 

hence, 

for a =1= b 

P; = P" =::::::> P" = I or 0 .  

(I0.2. 1I) 

( 10.2. I2) 

But since :EP" = I , only one P" can be one, and the others zero, which corresponds 
to a pure state. 
iv) Tr {p2} � Tr {p}, with equality only for a pure state. 
For, 

and since 

(10.2. 1 3) 

( 10.2. 14) 
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Therefore, 

Tr {p2} � 2: P" = Tr {p} (J 
and it is clear that ( 10.2. 1 5) can only be an equality if 

for some a0, i .e., p is a pure state. 

10.2.1 Von Neumann's Equation 

The Schrodinger equation is 

( 10.2. 1 5) 

( 10.2. 1 6) 

( 10.2. 1 7) 

for any state. A corresponding equation for the density operator can be derived. 
For, 

a,p = 2: P"[( a, lll'a))(l/f" I + lll'o)(a,(l/1" I)] (J 
1 = ih(Hp- pH). 

That is, 

[ H, p ] = iha,p (10.2.18) 

which is von Neumann's equation or the quantum Liouville equation. Von Neumann's 
equation can be exponentiated to give the formal solution 

p (t ) = exp( -iHt/fl)p(O) exp(iHt/11) .  (10.2. 1 9) 

10.2.2 Glauber-Sudarshan P-Representation 

Glauber [10.1] and Sudarshan [ 10.2] introduced a representation for the density 
matrix now known as the G/auber-Sudarshan P-representation. One assumes that p 
can be written as 

p = J d2a P(a, a*)la)(al ( 1 0.2.20) 

where P(a, a*) will play the role of a quasiprobability. Questions of existence of 
this P-representation we leave aside for the moment. 
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Notice that since 
l = (a / a) = L; (ain)(nia>, n 
Tr{p} = 1 = f d2a P(a, a*) L; (nJa)(aJn) 

n 

i .e., 

1 = fd2a P(a, a*). ( 10.2.2 1 )  

Further, for any normal product (a+ya•, 

Tr{(a+ya•p} = Tr{a•p(a+)'} 

= f d2a P(a, a*) I: (n J a• J a) (aJ(a+YJn), n 
i .e . ,  

((a+)' a•) = f d2a(a*)' a• P(a, a*) . ( 10.2.22) 

Thus, the quantity P(a, a*) plays the role of a kind of probability density for the 
variables a and a*, in that the means of normally ordered products of quantum 
operators are simple moments of P(a, a*). 

The conditions under which a Glauber-Sudarshan P-representation exists are 
problematical . Klauder and Sudarshan [ 10.3] have shown that, providing sufficiently 
singular generalised functions are chosen, it always exists. It certainly does not 
always exist as a positive function, nor indeed as a smooth function. 

For the moment we will leave aside these questions, the answers to which are 
very similar to those for the various Poisson representations of Chap. 7. 

10.2.3 Operator Correspondences 

We know that 

a J a) = aJa) 
and 

(a J a+ = a*(a l . 1 ( 10.2.23) 

For the other possible ways of acting with the a, a+, it is convenient to use the 
Bargmann states lla) so that 

( 10.2.24) 

Similarly, 
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a 
(a l ia = aa* (

all . 

Hence, we can write for a p representable by a P-representation which can be 
conveniently transformed, for this purpose, to the form 

a simple equation, 

a+ P = J dZa :a 
(I! a)) (alle-aa* P(a, a*) , 

and integrating by parts 

= J dzal!a) (all e-aa* {a* - :a
} P(a, a*) . ( 10.2.25) 

We thus can make an operator correspondence between a+ and a* - a;aa. A similar 
formula holds for a. Summarising, with the obvious correspondences arising from 
( 10.2.23,24), we have 

ap +-+ aP(a, a*) 

a+ p +-+ (a* -;a} P(a, a*) 

pa +-+ (a -a:*) P(a, a*) 

pa+ +-+a* P(a, a*) . 
10.2.4 Application to the Driven Harmonic Oscillator 

We consider the Hamiltonian 

H = liw(a+a + t> + (A.a+ + A.*a) 

for which the quantum Liouville equation is 

in�:= liw[a+a, p] + A.[a+, p] + A.*[a, p]. 

( 10.2.26) 

( 10.2.27) 

( 10.2.28) 

We now turn this into an equation for P(a, a*) by using the operator correspond­
ences ( 10.2.26). Thus, 

a+ap- (a* - :a) aP ( 10.2.29) 
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-pa+a- - (a- a:*)a*P ( 10.2.30) 

[notice that the order of the operators in ( 10.2.30) reverses, since acting on p they 
operate from the right, whereas on P, they operate from the left]: 

[a+, p]-[(a* - :a) -a* J P 

a 
=- aaP. 

Similarly, 

a [a, p]-aa* P 

so that we find 

( 10.2.3 1 )  

( 10.2 . 32) 

( 10.2.33) 

This corresponds to a Liouville equation for the variables. A word of caution. It 
is tempting to treat a and a* as independent variables which is not strictly true, 
and in writing all the above correspondences, one should really write 

a 
a* 

a 
a a 

= x + iy 
=x-iy 

=! (l_- il_) ax ay 
a .t (a .a ) aa* = 2 ax+ I ay 

and 

A.= p. + iv, 

and in terms of these real variables, ( 10.2.33) becomes 

-= -(coy+ vfh)- -(cox+ p.f1i) P aP [a a ] at ax ay 

which is a Liouville equation, equivalent to the differential equations 

dx . fh dt =-coy- v 

dy 
dt 

=cox+ p.fh 

( 10. 2.34) 

(10.2.35) 

( 10.2.36) 
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which are equivalent to 

�; = i(wa + A./fi) 

with the solution 

The solution for P is , assuming a deterministic initial condition, 

( 10.2 .37) 

( 10. 2 . 38) 

P(a, a*, t) = 5 (x- Re f- fi� + c;e111"}) 5 (y- Im {- fi� + c;e1""}) { 10.2.39) 

where the complex delta function is understood to mean ( 10.2.39). 
Notice that A. may depend on time, in which case (10.2.37) becomes 

�; = i[wa + A.(t)/fi] 

whose solution is 

t a(t) = a(O) e1"'t + i f dt' e1"' <t-t'> A.(t')/fi 
0 

and the corresponding P is 

P(a, a*, t) = 52[a- a(t)] . 

1 0.2.5 Quantum Characteristic Function 

( 10.2.40) 

( 10.2.41) 

( 10.2.42) 

( 10.2 .43) 

The Fourier transform of P(a, a*) would provide a natural characteristic function 
like that introduced in Sect. 2.6. Let us define 

x(A., A.*)= f d2a exp (A.a* - A.*a) P(a, a*). 

Notice that if 

a= x + iy 
A.= !J. + iv, 

then 

A.a* - A.*a = 2i( vx - yp.) 

(10.2.44) 

(10.2.45) 

so that ( 1 0.2.44) is a Fourier transform in two real variables. [t is also possible to 
write 
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x(A., A.*) = Tr {p exp().a+) exp( -A.*a)} ( 10.2.46) 

which can serve as a general definition of the quantum characteristic function. 
Notice that for any operator A , 

Tr {A} = L; (niAin) = j_ fd2a L; (nl a) (aiAin) 
n 1t n 

i.e . , 

= j_ J d2a L; (a I A In) (n I a )  , 
1t n 

I Tr { A} = - J d2a (a lA Ia ). 
1t 

(1 0.2.47) 

We now introduce the Baker-Hausdorff formula [ 10.4] .  For any two operators 
A and B such that their commutator [A, B ]  commutes with both of them, One can 
write 

Noting 

we see 

exp( A + B) = exp(A) exp(B) exp(- HA, B]) 
= exp(B) exp( A) exp( HA, B ]) . 

exp(A.a+) exp(-A.*a) = exp( -A. *a) exp(A.a+) exp( I ..1.12). 

Hence, 

Tr{p exp(A.a+) exp(-A.*a)} = exp(IA.I 2)Tr {p exp(-A.*a) exp(A.a+)} 
= exp( l A.I 2)Tr {exp(A.a+) p exp( -A.*a)} 

( 10.2.48) 

= exp( I A.I 2) J d2a(a lexp(A.a+) p exp(-A.*a) l a ) 
1t 

so 

Since 

x( ..t, ..t*) = 
exp( l ..tlz) f d2a exp( ..ta *- A.*a ><a lp la >. 

1t 

(alp !a) >0 

( 10.2.49) 

( 10.2.50) 
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and 
I Tr {p} = - J d2a (a i p i a) = I, 

1t 
( 10.2. 5 1) 

( 10.2.49) is a Fourier transform of a function (a I pia) which satisfies the conditions 
of a probability function. Hence, the Fourier transform x(A.,A. *)exp( - I A. l 2) is its 
corresponding characteristic function and from Sect. 2.6, it determines (a I p I a) 
with probability one. 

From Sect. l 0.1.2, we then see that (a I p 1 a) determines p. Hence, x(A., A.*) 
determines p with probability one. 

10.3 Quantum Markov Processes 

We now briefly develop a simplified form of the quantum theory of damping. This 
requires some knowledge of quantum statistics. 

10.3.1 Heat Bath 

Damping, in practice, occurs because a system interacts with another very large 
system known as a Heat Bath, into which the energy of the system is dissipated. 
However, noise arises also, since the heat bath distributes some of its energy 
back into the system. 

As a model of a heat bath, consider a large number of independent harmonic 
oscillators with operators r, and Hamiltonian 

( 10.3. 1 )  

This system does, in fact, possess a stationary density matrix; indeed, any positive 
function of H8 is satisfactory. Statistical mechanics allows us to choose a canonical 
ensemble in which the density operator is 

p(T) = exp(-H8/kT)/Tr {exp(-H8/kT)} , ( 10.3 .2) 

where Tis the temperature of the heat bath. It is trivial that 

[H8, p(T)] = itzo,p = 0 . (10.3.3) 

Because H8 is the sum of terms which commute with each other, one can write 

p = II p,(T) 
I 

with 

(10.3.4) 

--------- - ---- --�--�------...... ----...... ---
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Further define 

i.e., 

Z (T) = 
exp( -1lwtf2kT) . 

1 I - exp( -nw,fkT) 

The mean number (n1(T)) is also useful and is defined by 

i .e., 

(10.3.5) 

(10.3.6) 

Further items of use are the bath correlation functions. To obtain these we define 

(i H t) ( i H t) . F1(t) = exp T F1 exp - ---f- = exp(- zw1t) F1 

so that the bath correlations are 

(Fi(t)FJ> = e iOJ/t (Fi rJ> = e iOJtt OIJ<ni(T)) 

(F1(t)F1) = (Fi(t)FJ) = 0 

(F,(t)FJ) = e- 1m1' (FJ F1 + o,1) =e-1m1' 01Jl (n,(T)) + I] . 

10.3.2 Correlations of Smooth Functions of Bath Operators 

Consider a variable 

(10.3.7) 

(10.3.8) 

(10.3.9) 

{The factor exp (iw0 t) is inserted with a view to the application in Sect. 10.4.2). 

(y(t )) = 0 

(y(t)y(O)) = (y+(t)y+(O)) = 0 

(y+(t)y(O)) = � I stl1(n1{T)) exp(i(w1 - w0)t] 
I 

(10.3.10) 
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Suppose now that the modes i are spaced closely together so that w, is a smooth 
function of i. 

Then we relate the variables thus. 

( 1 0.3. 1 1 ) 

( 10.3 . 1 2) 

and 

( 10.3. 1 3) 

For sufficiently smooth functions (n(w, T)), S(w), the correlation functions are 
rapidly exponentially decaying functions of t. For example, consider 

� 
(y+(t)y(O)) = f dw S(w)(n(w, T)) exp[i(w- w0)t ] ( 10.3 . 14) 0 

If, as is usual, S(w)(n(w, T)) is a smooth function of w, then its fourier transform 
is a correspondingly rapidly decaying function of t. Thus, the correlation function 
( 10.3. 1 4) will be of the form of a rapidly decaying function of t, multiplied by 
exp(- iw0t ) . 

This is reminiscent of the relationship between correlation function and 
spectrum presented in Sect. 1.4.2, but here we have exp [i(w - w0)t] rather than 
cos wt, and the correlation function is complex. 

10.3.3 Quantum Master Equation for a System Interacting with a Heat Bath 

We shall now show that when a quantum system interacts with a heat bath, we can 
apply the adiabatic elimination methods of Sect. 6.6 to develop a quantum master 
equation. The Laplace transform method used here is not the most usual, but it 
gives the answer very quickly and quite precisely. 

We suppose the system is described by operators A, A+, which can obey any 
commutation relations, and the bath by harmonic oscillator operators r"F/. 

The Hamiltonian is considered to be able to be written 

( 10.3 . 1 5) 

H3 is a function of A, A+ only. Hz can be written 

Hz= L; (C g1T/ + c+g/F,) ( 10.3. 1 6) 
I 

where C is a function of A and A+. Here g1 may be a function of time. H1 is the 
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bath Hamiltonian and has the form ( 10.3. 1 ), though even this is not absolutely 
essential. The system and bath operators commute, and each acts in its own space. 
Thus, if H2 is set equal to zero, 

P = Ps X Ps 
and 

. _.. apB 2(fl ) I" at = }' I• Ps 

and strictly speaking, we should write 

( 10.3 . 1 7) 

( 10.3. 1 8) 

( 10 .3 . 1 9) 

to indicate that each operates in its own space. The parameter y is i ntroduced to 
formalise the fact that the procedure is valid when the bath variables have a much 
faster time scale than the system variables, and that the g1, to give a finite limit, 
must be considered to become large also. The exact implementation of this limit in 
a practical case depends on the knowledge of suitable variables which become 
large. 

Then the equation of motion for the density matrix can be written 

( 10.3.20) 

where 

(10.3.2 1 )  

The operators L1 are known as  Liouville operators, and are linear operators. 
Equation ( 1 0.3 .20) is now in exactly the right form for us to apply adiabatic elimina­
tion techniques, provided we can define a suitable projector. We choose a projector 
of the following kind : 

I Pp = p(T) X Tr8 {p} = p(T) X p, I ( 10.3.22) 

where p(T) is defined by ( 10.3.2), and by Tr8 we mean the trace only over the bath 
states. That is, a complete set of states for the systems and bath can be written 

Ina, n.) and 
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Pis obviously a projector and 

since H1 operates only on bath states. Also 

so the requirement 

is satisfied. 
We now check whether PL2P vanishes, i.e., what is 

- � p(T) X Tr8{[H2, p(T) X p]} . 

If we substitute a typical term from H2, namely, crt into this we get 

I - h p(T) X Tr8{Ftp(T) X Cp- p(T)Fj X pC} 

and obviously 

Tr8 {Ft p(T)} = Tr8 {p(T)Fi} = 0 .  

Similarly, all other terms vanish. 

( 10.3 .23) 

( 10.3.24) 

( 10.3.25) 

(10.3.26) 

( 10.3 .27) 

( 10. 3.28) 

( 10.3 .29) 

We can therefore carry out the same adiabatic elimination procedure as in 
Sect. 6.6 to obtain 

( 10 .3 .30) 

which reduces to 

( 10.3.31) 

This can now be reduced explicitly to a simpler form. However, we must first deal 
with L11• In Sect . 6.6 we used the relation 
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... 
Lj""1(l - P) = J eLr'dt(l - P) ( 10.3.32) 0 

whose truth depended on the truth of 

lim eLr'(l - P) = 0 
,_.., 

which arose from the assumption that L1 had negative eigenvalues. 
Such a strong result is not in fact needed here - all that is needed is that the 

particular traces of F1, Fi over the bath in the stationary density operator p(T) 
vanish at large t and this will occur if the particular linear combinations which turn 
up, namely, 'f:.g1Fj, etc, have coefficients g1 which satisfy the smoothness condi­
tions for S(w) discussed in Sect. 10.3.2. However, we leave the detailed checking of 
this to the reader and adopt ( 10.3 .32). 

We note that for any operator A, we can define 

A(t) = e-Lr•A = exp(iH1 t/li)A exp(- i H1t/li) ( 10.3 .33) 

which is a notation in agreement with ( 10.3 .7). A proof is obtained by explicit 
differentiation and definition of L1 : 

dA(t) i lit = h [H., A(t)] = -L1A(t). 

We can now proceed: 

-Tr8{LzLI1Lzp(T) X p} 

( 10.3.34) 

= �z [ Tru{[Hz, e-iHr''"[H2, p(T) X p]eiHJ'1"J}dt 

1 ... 
= liz [ Tr8 {[eHr'111H2e-1Hr''", [H2, p(T) x .om dt (10.3 .35) 

= �z I Tru q;::[cg,rt(t) + c+g,* r,(t), [Cg1F/ + c+gj F1, p(T) x .om dt. 

There are 1 6  terms in this expression. However, only those involving a rand a r+ 
wiil be nonzero. Consider the particular term 

which, with the identification g"f" - S1, w0- 0 from ( 10.3.9), we can write in terms 
of 

y(t) = 'f:.g'!Fit). ( 10.3.36) 

We introduce a notation similar to that normally used in quantum optics, namely, 

�...___ __ -------.............. --....... __........;J 
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I ... 
tzz [ dt (y+(t)y(O)) = !NK + il5 

I ... 
f1Z I dt (y+(O)y(t)) = !KN- itS 

1 "" 
f1Z I dt (y(t)y+(O)) = !K(N + I) - itS' 

I ... 
hz I dt (y(O)y+(t)) = !K(N + I) + io' .  

(10 .3 .37) 

The double commutators can be evaluated, and we find that the Master equation 
reduces to 

:: = - ! [HJ, ,ol- iJ[e+e, ,ol + io'[ee+, .01 
!K(I + N) (2e,oe+ - e+e,o - ,oe+C) 

+ !KN(2e+ ,oe - ee+ ,o - ,oee+) == i,o. 

Comments 

(10.3.38) 

i) The Master equation in the above form is conventionally derived by methods, 
not using the Laplace transform, but using essentially only time domain equations. 
See, for example, the work by Louisel/ [ 10.5] . Our derivation relies on L3 being 
very much less than y2 L1 and, in practice, in optical situations this is not so, since 
H3 represents a rapid oscillation which decays quite slowly as a result of the 
interaction with the heat bath. This can usually be taken account of by introducing 
the interaction picture and the result is a Master equation of the form ( 10.3.38) in 
which explicit time dependence of g1 occurs and co0 in ( 10.3 .9) is the natural 
frequency of the free motion. This procedure is demonstrated in our treatment of 
the two level atom in Sect. 10.4.2. It is not our aim to give a full and detailed ac­
count here, and the reader is referred to Louisell's work for a full explanation. 
ii) The Master equation ( 10.3 .38) can be regarded as the definition of a quantum 
Markov process, which is simpler from a mathematical point of view. The quanti­
ties H3 and e specifying the free motion and the interaction with the heat b�th 
are quite arbitrary, as is their relationship to each other. Notice, however, that the 
definition is incomplete without a specification of how to define multitime averages; 
in other words, to define an analogue of the multitime joint probabilities which 
are basic to ordinary stochastic processes. 
ii i) In a zero temperature bath, p8 = 10) (01 and all averages of r+ r vanish. 
This means that 

( 10.3.39) 

and the third line does not contribute. This l ine, therefore, is related to thermal 
noise. 
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10.4 Examples and Applications of Quantum Markov Processes 

10.4.1 Harmonic Oscillator 

Here we take 

c-a 

( 10.4. 1 ) 
[a, a+] = I 
H3 = liw(a+a + !) . 

Using the commutation relations, we find that ( 10.3.38) reduces to (where we now 
write simply p instead of p.) 

�� = - iw'[a+a, p) 

where 

+ !K(N + I) (2apa+ - a+ap - pa+a) 

+ !KN(2a+pa - aa+p - paa+), 

w' = (J) + 0 - 01 • 
a) Diagonal Matrix Elements 
The diagonal matrix element 

(nlpln) == P(n) 

( 10.4.2) 

( 10.4.3) 

represents the probabil ity of there being n quanta in the system. We easily check 
that (using the properties of a+ and a defined in Sect. 10. 1) 

a,P(n) = K(N + l)[(n + l)P(n + 1 )  - nP(n)] 

+ KN[nP(n - 1) - (n + 1)P(n)] . ( 10.4.4) 

This is an ordinary birth-death Master equation. Notice that the transition prob­
abil ities have the form 

t +(n) = KN(n + l) 
r(n) = K(N + 1)n 

( 10.4.5) 

so that the probability of creating a quantum has a part proportional to (n + 1) .  
A chemical reaction of the form 

(10.4.6) 
A+ X-2X 

would have a similar Master equation. 
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The solution in the stationary state is 

( N )n 1 P.(n) = I + 
N I + 

N · 
This is the usual Boltzmann distribution, in which one can identify 

N 
1 + fJ = exp( -hrofkT) 

which means 

N = 1 /[exp(hw/kT) - I] 

which determines N in terms ofT, or conversely. We note that 

(n). = N 

var{n} . = N2• 

b) Fokker-Pianck Equation from P-Representation 

(10.4.7) 

(10.4.8) 

(10.4.9) 

(10.4.10) 

We use the Glauber-Sudarshan P-representation from Sect. 10.2.2 and the operator 
correspondence from ( 10.2.26) of Sect. 10.2.3. Remembering that operator products 
written on the right of p are reversed in order when the correspondence is made, 
we derive the Fokker-Planck equation for the P function : 

aP [1 { a a ) . , { a a ) _ a2 ] - = 2K -a + -a* - IW -a - -a* + KN -- P at aa aa* aa aa* aaaa* 

This is a form of complex Ornstein-Uhlenbeck process. For we can write 

a= x + iy 

and 

and get 

( 10.4.1 1 )  

(l0.4.12) 

This result is very simple compared to the Poisson representation Fokker-Pianck 
equations which always involve nonconstant diffusion terms. The stochastic dif­
ferential equations equivalent to (10.4.12) are 
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dx = -(!Kx + wy)dl + ...f[N dW1(1) 

dy = -(tKy - wx)dt + ../[N dW2(1) . 
( 10.4.13) 

These represent the equations for a damped oscillator, very l ike those considered 
in Sect. 5 .3 .6d. 

These are often written as one complex Langevin equation : 

da = - (!K- iw)a dt + ../ jJ df/(1), 

where df/(1) is the increment of a complex Wiener process satisfying 

(df/(1)) = (df/*(t)) = (df/(1) d'f(t')) = (df/*(1) df/*(1')) = 0 
(df/(1) df/*(1)) = dl 

and explicitly given by 

(10 .4.14) 

(10.4.15) 

(10.4.16) 

The use of the complex dl'f(l) is not very easily generalised and we will not use them 
any further. However, the complex variable FPE is useful, and will be maintained. 

The solutions of the Ornstein-Uhlenbeck process are given in Sect. 4.4.6. We 
find 

(a(t)) = a(O) exp[- (K/2 + iw)l] 

(a*(l)a(t)) = (a*(O)a(O)) e-Kr + N(l - e-Kr) 

(a2). = (a*2), = 0 
(aa*). = (a+ a) . = N . 

(10.4.17) 

(10.4.18) 

Only when N = 0 do we find that (a+ a). vanishes, i .e . ,  at zero temperature. The 
time correlation functions of this Ornstein-Uhlenbeck process require interpreta­
tion which will be done in Sect 10.5. 

c) Inclusion of a Driving Field 
Suppose we consider the driven damped harmonic oscillator obtained by choosing 

(10.4.19) 

which represents a quantised oscillator interacting with a nonquantised field 
(Sect. 10.1.1 ) . 

The FPE develops an extra term 

(ie � - ie* ...£__) P 
aa aa* 

which allows the FPE to be written. 

(10.4.20) 
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aP [<
iK . '

) 
a ( ie 

) at
= Z - IW 

aa 
a + !K- iw' 

+ (tK + iw') 
a!* (a* - !K � iw') + Kiii 

aa�a* J p ( 10.4.2 1 )  

which again represents an Ornstein-Uhlenbeck process, but with the origin shifted 
so that 

(a). = -ie/(!K- iw') = (a), 

(aa*) - (a)(a*) = iii 
(a2) - (a)2 = (a*2) - (a*)2 = 0 

and the time-dependent solution for the mean is 

(a(t)) = (a(O)) exp [- ( � - iw'} t J 
- ! K � iw' { l - exp[- ( � - iw'} t ]} . 

(10.4.22) 

(10.4.23) 

( 10.4.24) 

The stationary distribution in the P-representation is a Gaussian with variance 
iii and mean given by (10.4.22). If iii is small, this represents a density matrix p cor­
responding almost to that of the pure coherent state I a,) (a. I. Thus, a good 
approximation to a coherent state is provided by a classical driving field, interacting 
with a harmonic oscillator which interacts with a low temperature bath. 
d) Driving by a Fluctuating Field 
Suppose in ( 1 0.4. 1 9) e is a function of time e(t ), possibly stochastic. The Langevin 
equation for a, a* is 

da(t ) = [-(tK- iw')a(t) - ie(t )] dt + J�iii [dW1(t ) + idW2(t )] . ( 10.4.25) 

Since e(t) occurs l inearly and multiplied by a constant, we can make some simple 
stochastic assumptions. 

The simplest is to take the short correlation time l imit and replace 

e(t )dt = eo dt + J { [dW3(t ) + i dW4(t)] 

which gives independent fluctuations in each component [since the coefficient of 
e(t ) is constant, there is no Ito-Stratonovich ambiguity]. The net effect is to modify 
( 10.4.2 1 )  by the replacement 

Kiii-Kiii + J, (10.4.26) 

that is, the extra noise simply increases the thermal noise already present. 
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Alternatively, equations of motion for e(t) may be assumed and solved in 
conjunction with the stochastic differential equation ( 10.4.25), 

10.4.2. The Driven Two-Level Atom 

An idealisation of atomic systems is the two-level atom which may exist in either 
of two states. We set up a matrix formalism with the matrices 

I -) = [�] ground state 

I +> = [�] excited state. 
( 10.4.27) 

The system can make transitions which are described by the Pauli matrices 

s+- s-- s -
[0 I] 

[
0 OJ [I -o o' - I o '  ·-o ( 10.4 .28) 

Thus, s+ lifts the atom to the excited state, s- drops it to the ground state. The 
Hamiltonian for the system in interaction with a radiation field and a driving field 
E(t) can be written as 

H3 = !11woS.- i1id[S+E(t) + s-E*(t)] 

Hz = 2:: [gtS+al + g/S-a+1] 
i 

HI = 2:: nwla(al + D . 
I 

( 1 0 .4 .29) 

Physically, the term !11w0S, assigns energy !liw0 to the excited state, -tliw0 to 
the lower state, the energy of excitation thus being liw0• The second term in H 2 

represents the coupling through a dipole moment d of the driving field to the atom 
and is of essentially the same form as H3, in which, however, all the other modes 
i are quantised. The modes i are to be thought of as representing photons of energy 
liw0 travelling in various different directions labelled by i, whereas the driving field, 
which is a strong classical field, is in a single particular direction. 

The quanta of the radiation field provide the heat bath. Thus we use a1 for F1• 
The heat bath can, in principle, be at any temperature, but is normally at essentially 
zero temperature in experimental situations. We shall preserve a nonzero tempera­
ture T. 

The driving field E(t) is assumed to have the same frequency w0 as that required 
to excite the atom: thus, we write 

E(t) = e e-i"'o' . (10.4.30) 

It is best here to work in the interaction picture which removes the rapid oscillations. 
Define 
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_( ) (iw0 ) ( iw0 ) p t = exp T s.t p exp - T s.t . 

Then we can describe the motion of p(t) by the Hamiltonians 

H3 = - !lid(S+e + s-e*) 

Hz = � (gt eimo• s+al + gte- imo•s-an 
I 

( 10.4.3 1 )  

( 10.4.32) 

The reader may check that all derivations go through in exactly the same way as in 
Sect. 10 .3 .3, with the difference that we make the the replacement 

( 10.4. 33) 

which means that the y(t) are now defined exactly as in ( 10.3.9). Thus, the explicit 
exponential time dependence does arise here as a result of the free motion of the 
atom. 

The master equation becomes, for p, the reduced density matrix (in the interaction 
picture), after using the algebra corresponding to the explicit forms of the matrices 
( 10.4.28), 

;� = ! id[S+e* + s-e, p] 

+ tK(1  + fi)[2s-ps+ - tO + s.)p - tiJ(1  + s.)J 

+ tKR[2s+ps- - HI  - s.)p - tiJ(l - s.)J . ( 10.4.34) 

We cannot use coherent states here, since the S+, s. operate in a two-dimensional 
space and are not harmonic oscillator operators. The density matrix is a 2 x 2 
matrix with unit trace and is completely specified by the quantities Tr {pS±} , Tr {pS.} ,  
which are the expectations of the operators. Hence, we derive as a complete speci­
fication of p(t), 

; (S+) = - !K(2N + l )(S+) + ide(S,) 

d -
dt (S-) = - !K(2N + 1 )(S-) - ide*(S,) (10.4.35) 

; (S.) = -K(2N + l )(S.) - K + !id(e* (S+) - e(S-)) . 

These equations have been investigated in detail by Carmichael and Walls [ 1 0.6]. 
We note a few points. 
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a) Stationary Solution with e = 0 
Here, 

(S,) = - 2N + I . 

Setting fi = (e"Q)/kT - l )-1 gives the correct Boltzmann distribution. 

b) Temperature Dependent Relaxation 

( 10.4.36) 

In contrast to the harmonic oscillator, the relaxation rate is proportional to 2fi + I 
which depends on temperature. The difference in operator algebra leads to this. 
c) Comparison with Bath Temperature 
If we explicitly evaluate the quantities K, fi, o, o', using ( 10.3. 1 2) and related forms, 
we find 

.. .. 
tKfi + io = li2 f dt e-1Q)ot f dw S(w) (n(w, 1)) e1Q)' • 

0 0 

We note the identity 
.. 

f dQ f f(Q)e±10' = 1t /(0) ± i f dQ j(Q)jQ , 
0 

( 10.4.37) 

( 10.4.38) 

where f represents the Cauchy principal value of an integral containing 1 /D. Hence, 
.. 

tKN + io = 7th2S(w0) (n(w0, T)) + ili2 f dw S(w)(n(w, T))(w-w0)-1 • ( 10.4.39) 
0 

Similarly, 

0 
+ ili2 f dw S(w)(n(w, T) + l )(w - w0)-• 

0 

which is the more usual form for the damping constants. 
From these equations, one notes 

K = 21tli2S(w0) 
fi = (n(w0, T)) = [exp (liw0/kT) - 1 ]-1 

.. 
-o + o' = li2 f dw S(w) (w - Wo)-1 . 0 

( 10.4.40) 

( 10.4.41 )  
( 10.4.42) 

( 10.4.43) 

Notice that ( 10.4.42) is consistent with ( 10.4.36), i .e . ,  the atom comes to the same 
temperature as the bath. 
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d) Stationary Mean in Nonzero Field 
We can solve ( 10.4.35) to obtain 

<s+) _ (S-)* _ -2idKe 
- - K2(2N + 1 )2 + 2dz l e l z ·  

( 10.4.44) 

( 10.4.45) 

e) Connection with the Random Telegraph Process : the Einstein Equations 
When E(t) = 0, we may define 

P(+) = <+ IP I +> 
P(-) = (- i p i -) 

and derive the Master equation for P( +) and P(-). 

a,P(+) = - K( l + N)P(+) + KNP(-) 
a,P{-) = K(l + N)P(+) - KNP(-) . 

( 10.4.46) 

( 10.4.47) 

These are identical to the equations for the random telegraph process of Sect. 3 .8 .5 
Thus, the two-level atom can be regarded as a quantum random telegraph process. 
However, if E(t) :f= 0, the off-diagonal matrix elements are also involved, giving a 
truly quantum process. 

Equations ( 10.4.47) were first introduced by Einstein [ 10.7] and are thus nowa­
days known as the Einstein equations. They demonstrate two effects, namely, 
i) stimulated emission and absorption : terms proportional to N depend on the 
number of photons in the radiation field and are called stimulated terms. Thus, 
the processes of excitation (- - +) and de-excitation ( + - -), with a corres­
ponding absorption or emission of a photon, can occur as processes stimulated by 
the number of photons already in the field. 
ii) Spontaneous emission : i .e . ,  de-excitation ( + - -) occurs by the term KP( +) 
occurring in both equations. De-excitation can occur even though no photons are 
present. This is not surprising from a modern point of view, but was an important 
innovation when first introduced. 

10.5 Time Correlation Functions in Quantum Markov Processes 

For a quantum system the two-time correlation function (A(t')B(t)) can be easily 
defined exactly : we simply state the result here. If p(t) is the density matrix at time 
t (in the Schrodinger picture), H is the Hamiltonian and A and B are the operators 
for the variables to be measured, then 
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(A(t )) = Tr{Ap(t )} ( 10.5. 1 )  

and 

( 10.5.2) 

[The truth of ( 10. 5.2) arises from the Heisenberg picture form, where it becomes 

(A(t + r)B(t )) = Tr{A8(t + r)B8(t)p8} ( 10.5 .3) 

where the Heisenberg density matrix p8 is time independent.] 
Equation ( 10.5 .2) is exact, but not useful. In a quantum Markov system, we 

want to express everything in terms of the Liouvill ian for the reduced system, in 
which heat bath variables have been traced out. When this has been done, we have 
effectively defined multitime joint probabilities which enable us to specify the 
quantum Markov process completely. 

This can be achieved relatively simply. Supposing A and B are operators only 
in the system space and not in the heat bath space. Then we can rewrite ( 10.5 .3) 
as 

( 10.5.4) 

(since A is proportional to the identity in the bath space). 
The equation of motion for the term 

(10.5 .5) 

in terms of r is 

ihaTX(r, t )  = [H, X(r, t)] ( 10.5 .6) 

and in exactly the same way as we derived ( 10.3.38), which can be written abstractly 
as 

a,p(t )  = lp(t), ( 10.5.7) 

for 

p = Tr8{p} , ( 10.5 .8) 

we can derive 

( 10. 5.9) 

so that ( 10. 5.4) is equivalent, in this adiabatic limit, to 

(A(t + -r)B(t )) = Tr. {A eLTBp(t )} . ( 10.5. 10) 
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By using a similar procedure, general multitime correlations can be worked out, 
e.g. , 

(10.5 . 1 1 ) 

(in both of these, l operates on everything to the right of it) and so on. 
Since the operators do not all commute, the time ordering need not be the same 

as the operator ordering. This allows a wide range of possbilities, not all of which 
give simple formulae. A particular case that does turn up is the form 

(A(t)B(t + r)C(t + r)D(t)) = Tr {A eiHTifl BC e-iHTtfl Dp(t)} 

= Tr. {BC Tr8 {e-iHTtfl Dp(t)A eiHT'"} }  

so that 

(A(t)B(t + r)C(t + r)D(t)) = Tr. {BC eLT Dp(t)A} . ( 10.5 . 1 2) 

Note that ( 10.5 . 10) is a special case of this, as by setting C(t) = D(t) = I ,  we find 

I (A(t)B(t + r)) = Tr, {B eLT p(t)A} I (10.5 . 1 3) 

The complete set of correlation functions for all possible operators defines all 
possible joint averages and may thus be taken as a definition of the Markov 
property in a quantum system in which l can be any operator which preserves 
Tr. {p} and the positivity of p. In particular, l as defined in ( 10.3.8) can be used 
and is, in practice, the only kind of operator that does occur. 

10.5.1 Quantum Regression Theorem 

In the case where l inear equations turn up for the means, we can develop a quantum 
regression theorem, similar to that for an ordinary Markov process (Sect. 3.7.4) 
This result was first derived by Lax [ 10.8]. 

Suppose for a certain set of operators Y1, the Master equation can be shown to 
yield for any initial p, 

o,( Y,(t)) = :E G,1(t)( Yit)) . ( 10.5. 1 4) 

Then we assert that 
( 10.5. 1 5) 

For 

( 10.5 . 1 6) 
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and the right-hand side is an average of Y1 at time t + -r with the choice of initial 
density matrix 

Plnit = Y ,p(t) • ( 10.5 . 1 7) 

Since by hypothesis any initial p is permitted and the hypothesis is l inear, we may 
in fact, generate, any initial condition whatsoever. (It might be thought that the 
requirement that p be hermitian and positive semidefinite could limit the available 
initial conditions, but this is not so. For example, in two dimensions there are four 
linearly-independent, positive semidefinite matrices with unit trace, namely, 

[ 1 0] [0 OJ [i i] [ i i i] 
0 0 

, 
0 1 

, 
i t 

, 
-!i t , ( 10.5. 1 8) 

which provide a basis for the space of all 2 x 2 matrices. This property generalises 
straightforwardly to arbitrary dimensions). Hence, choosing Plnlt as defined in 
( 10.5 . 1 7), the hypothesis ( 10.5 . 14) yields the result ( 10.5. 1 5) which is the quantum 
regression theorem. 

10.5.2 Application to Harmonic Oscillator in the P-Representation 

We consider firstly the normally ordered time correlation function 

<a+(t + -r)a(t)) = Tr {a+el 'a f d2a P(a, t ) l a) <a l } 
= Tr {a+e.t:r f d2a aP(a, t) l a) <a l } . 

The term 

( 10.5 . 1 9) 

is the solution of a generalised Master equation, for which the initial condition is 
the operator whose P-representation density is aP(a, t). If a FPE corresponding 
to i exists [e.g., ( 10.4. 1 1 ) ( 10.4.2 1)] this quantity is the density matrix with P func­
tion given by 

J d2a'a'P(a, t + -r i a' , t)P(a' , t )  

so that, using the cyclic property of the trace and <a I a+ = a* <a l , 

<a+(t + -r)a(t)) = Tr {a+ J d2ad2a'a'P(a, t + -r i a', t)P(a', t) l a) <a l }  
= J d2ad2a'a*a'P(a, t + r ;  a't) ,  

this means that 

<a+(t + -r)a(t)) = <a*(t + -r)a(t)) 

( 10.5 .20) 

( 10.5 .2 1 )  
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where a(t) is the P-representation stochastic variable. Similarly, for any function of 
a+ and a, 

( 10.5.22) 

For non-normally ordered products, the answer is not so simple. 
For example, consider 

(a+(t + -r:)a(t + -r:)a+(t )a(t )) = Tr {a+a eLTa+a f d2aP(a, t) i a) (a i } ; ( 10.5.23) 

using the operator identities of Sect. 10.2.3 ( 10.2.26) 

( 10. 5.24) 

and proceeding with the same argument as above, 

= Tr {a+ a f d2a f d2a'P(a, t + r i a', t )[ (a'* - ;a,) a'P(a', t)J i a)(a i } ( 10.5.25) 

and finally, using the same operator identities, 

( 10.5 .26) 

To simplify, we may drop the ajaa since it integrates to zero, and integrate the ajaa' 
by parts, so that 

( 10.5 .26) = J d2ad2a'(a*a)(a'*a')P(a, t + r ;  a' , t )  

+ f d2a'P(a', t )a' a:' [f d2a(a*a)P(a, t + r i a' , t)] 

which can be rewritten as 

(a+(t + r)a(t + r)a+(t)a(t)) = ( l a(t + r) l 2 l a(t) l 2) 
+ (a' a:' < I a(t + r) l 2 1 [a', t])) 

( 10. 5.27) 

( 10.5 .28) 

( 10.5 .29) 

which is in close analogy to the Poisson representation result (7.7.76). In fact, if the 
P function depends only on I a 1 2 and I a' i 2, they are identical, with the change 
from I a 1 2 (P-representation) to a (Poisson representation). 

A measurement of more interest is the correlation function 

( 10.5 .30) 
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which has been shown by Glauber [ 10. 1 ]  to be what is measured when one correlates 
intensities of light received at different times by a detector. 

We use ( 10.5 . 1 2) to write 

which, by similar reasoning to the above, yields 

G2(r, t) = J d2ad2a' l a2 l l a'2 1 P(a, t + T ;  a', t) 
= ( j a(t + r) j 2 j a(t) j 2) .  

( 10.5 .3 1 )  

( 10.5 .32) 

This particularly simple result means that the measured intensity correlation func­
tion G2(T, t) is the same thing as the corresponding correlation function for the 
P-representation variables, and that it is not the same thing as ( 10.5.29), 
Example : Driven Damped Oscillator. from Sect. 10.4. l c  we have the stochastic 
differential equation for a - a. : 

d(a - a,) = -(!K - ico')(a - a,)dt + .../KN d1'J(I) 

(with d172 = d17*2 = 0, d17d17* = dt). 
Hence, define 

so that, using Ito' s  formula 

dl = -Kldt + vKfi [(a - a,)*d17 + (a - a.)d1'f*] + KNdt 

and 

d�;) = - K(([) - !V) . 

Thus, ([) -N obeys a linear equation and the quantum regression theorem can be 

applied, i . e . ,  in the stationary state 

We use the Gaussian nature of the stationary distribution in a (t), a* (t) to note that 

and x and y are independent in the stationary state [from (10.4.23)] so, using (2. 8 . 6) ,  

- 2  - 2 - 2  (/ >s = ((/ )s) = 2N ' 
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i .e . , 

More simply, 

I (a*(t)a(O)). =: G1(t ). = N exp[ -(!K + iw)t]. 

10.5.3 Time Correlations for Two-Level Atom 

( 10. 5.33) 

( 10.5 .34) 

These provide perfect applications of the regression theorem and are quickly 
deduced from Sect. 1 0.4.2. For simplicity, we consider only the stationary correla­
tion functions : 

Q(t) = (S-(t)S+(O)). 

[ (S+(t)S+(O)), 

(S.(t)S+(O)). 

then [ - !K(2N + l) 
dQ(t) = 0 dt 

fide* 

(S+(t)S-(0)), (S+(t)S,(OJ>,] 
(S-{t)S-(0)). (S-(t)S.(O)). , 

(Sz(t)S-(0)). (S.(t)S.(O)). 

(10.5 .35) 

0 ·� ] - !K(2N + I) -ide_* Q(t) .  

- !ide -K(2N + l) 

( 10.5 .36) 

This matrix equation can be integrated and the complete solution given. The initial 
condition is simpl ified by the algebra of the matrices ( 10.4.28) to 

( 10. 5.37) 

and the stationary values have already been given in Section 10.4.2 The problem of 
the correlation function and spectrum has been explicitly deduced by Carmichael 
and Walls [ 10.6] .  

10.6 Generalised P-Representations 

The idea of representing a density matrix as a linear combination of coherent state 
density matrices, as in the Glauber-Sudarshan P-representation, is particularly 
useful in quantum systems described by Bose operators a+ and a, since an inter­
pretation of quantum Master equations in terms of ordinary stochastic processes is 



1 0.6 Generalised P-Representations 409 

only possible this way. This contrasts with the Poisson representation, which 
merely transforms a birth-death stochastic process into a diffusion process. 

Despite the formal similarity to a classical probability distribution, the function 
P(a) is not a true probability distribution but belongs to a class of quasiprobability 
distributions. While P(a) exists for thermal light fields (a Gaussian distribution­
see Sect. 1 0.4. 1 ) and coherent laser fields (a o function distribution), for fields with 
nonclassical photon statistics, P(a) does not necessarily exist as a well-behaved posi­
tive function (although Klauder and Sudarshan ( 10.3] have shown that it does exist 
in terms of extremely singular distributions). Such nonclassical fields have been 
observed in experiments on atomic fluorescence. Alternative quasiprobability 
distributions which avoid some of the problems of the P-representation exist. The 
Wigner function which was the first quasiprobability method, may be obtained 
from the P-representation by the following integral : 

W(a) = ; f P(P) exp(- 2 1 P - a i 2)d2P .  ( 10.6. 1 )  

The Wigner function always exists a s  a nonsingular function but may assume 
negative values. The Wigner distribution simplifies averaging symmetrically­
ordered operator products but is less convenient for averaging the usual normally­
ordered operator products. 

An alternative representation which is always positive is the Q-representation 
or diagonal matrix elements of the density operator in terms of the coherent states : 

Q(a, a*) =  (a l p i a) . ( 10.6.2) 

Though this representation is positive, it has the disadvantage that not every posi­
tive Q function corresponds to a positive semidefinite Hermitian density operator. 
In addition, evaluating moments is only simple in the Q-representation for antinor­
mally-ordered operator products. 

Glauber defined an R-representation by means of the operator expansion given 
in Sect. 10. l .2e : 

R(a* ,  P) = (a I P IP> exp (! I a l 2 + t I P I 2) 

P = � d  I a> R(a*, P><P I exp £-H i a l 2 + I P I 2)]d2ad2P . 
( 10.6.3) 

While the representation is analytic in a*, p (and therefore nonsingular), it is also, 
by definition, nonpositive and has a normalization that includes a Gaussian weight 
factor. For this reason, it cannot have a Fokker-Planck equation or any direct 
interpretation as a quasiprobability. Nevertheless, the existence of this representa­
tion does demonstrate that a calculation of normally-ordered observables for 
any p i s  possible with a nonsingular representation. 

10.6.1 Definition of Generalised P-Representation 

In order to treat problems in nonlinear quantum optics where nonclassical photon 
statistics arise, a class of generalized P-representations was introduced by Drum-
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mond and Gardiner [ 10.9] by expanding in nondiagonal coherent state projection 
operators. The methods used are very similar to those used for defining various 
Poisson representations in Sect. 7.7. The generalised P-representations are defined 
as follows. We set 

p = J A(a, P)P(a, P)dp,(a, p) , 
g 

where 

_ l a> <P* I A(a, p) - (P* I a) ' 

( 10.6.4) 

( 10.6.5) 

dp,(a , p) is the integration measure which may be chosen to define different 
classes of possible representations and � is the domain of integration. The pro­
jection operator A(a, p) is analytic in {a, p). 

Useful choices of the integration measure are : 
a) Glauber-Sudarshan P-Representation 

This measure corresponds to the Glauber-Sudarshan P-representation. 
b) Complex P-Representation 

dp,(a, P) = da dp 

( 10.6.6) 

( 10.6.7) 

Here, (a, p) are treated as complex variables which are to be integrated on individual 
contours C, C'. The existence of this representation under certain circumstances is 
demonstrated in the next section. In particular, this representation exists for an 
operator expanded in a finite basis of number states. This is a characteristic 
s ituation where nonclassical photon statistics (photon antibunching) may arise, 
and where the Glauber-Sudarshan P-representation would be singular. This re­
presentation is called the complex P-representation since complex values of P(a,p) 
occur. It gives rise to a P(a, p) which can be shown to satisfy a FPE obtained by 
replacing (a, a*) with (a, p) in the usual Glauber-Sudarshan type of FPE. 

Under certain circumstances, exact solutions to Fokker-Planck equations occur 
which cannot be normalized as Glauber-Sudarshan P-functions. These can be 
handled with the present representation by choosing C, C' (paths of integration) 
in the complex phase space of (a, p). 

c) Positive P-Representation 

This representation allows (a, p) to vary independently over the whole complex 
plane. In the next section we will show that P(a, p) always exists for a physical 
density operator and can always be chosen positive, in which case we call it the 
positive P-representation. This means that P(a, p) has all the properties of a 
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genuine probability. It will also be shown that provided any FPE exists for time 
development in the Glauber-Sudarshan representation, a corresponding FPE 
exists with a positive semidefinite diffusion coefficient for the positive P-representa­
tion. This enables stochastic differential equations, and a correspondence between 
the quantum Markov process and ordinary diffusion processes to be derived. 

In all representations, it is, of course, true that observable moments are given by 

( 10.6.8) 

10.6.2 Existence Theorems 

We will show in this section that the generalised P-representations have quite strong 
existence properties. We do this with a number of theorems. NB : for brevity, we 
shall use the notation 

g = (a, /3) .  

Theorem 1 :  A complex P-representation exists for an operator with an expansion 
in a finite number of number states. 

Proof: Let 

( 10.6.9) 
n, m 

Then, by Cauchy's theorem, 

p = f f A(g)P(g)df-l(g) 
C,C' 

( 10.6. 10) 

with 

( 10.6. 1 1) 
n, m 

where C, C' are integration paths enclosing the origin. 

Theorem 2: A complex P-representation exists for any operator with an expansion 
on a bounded range of coherent states, i .e . ,  for 

p = J J A(a, f3)C(a, f3)d2ad2/3 , 
D, D' 

( 10.6. 1 2) 

where D, D' are bounded in each complex plane. 

Proof: Application of Cauchy's theorem shows that if 

P(g) = - 4
1
2 f f C(a', /3')/[(a - a')(/3 - /3')]dZa'd2/3' , 

1t D, D' 
( 10.6. 1 3) 
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then 

p = f f A(g)P(g)da dp , 
C,C' 

( 10.6. 1 4) 

where C, C' enclose D, D' respectively. Hence, the complex P-representation exists 
in this case relative to any bounded expansion in coherent state projection opera­
tors. 

Theorem 3 :  A positive P-representation exists for any quantum density operator 
p, with 

P(g) = ( I /47t2) exp (- I a - P* I 2/4)<Ha + P*) I P I t(a + P*)) · ( 10.6. 1 5) 

Proof: P(g) is positive, since p is a density operator, and it is composed of a diagonal 
matrix element multiplied by a positive function. In order to show that this repre­
sents a quantum density operator in the general case, the characteristic function 

( 10.6. 1 6) 

is used. This has been shown in Sect. 10.2. 5 to define the density operator uniquely. 
In terms of the R-representation for p, the characteristic function is 

x(A.) = 
� f R(a* , A. +  a) exp (-A.*a - l a l 2)d2a . ( 10.6. 1 7) 

We now substitute the R-representation for p into ( 10.6. 1 5) which defines P(g) 
in terms of the diagonal matrix elements of p. We then define pp to be given by the 
positive P-representation form ( 10.6.4) with P(g) as given by the previous process, 
calculate the corresponding characteristic function xP(A.) using ( 10.6. 1 6) and show 
that this is the same as the original characteristic function for p. Thus : 

xP(X) = f f P(g) exp (A.p - A.*a)d2ad2P 

= 4
�

4
ffff R(a'*, P') exp [A.p - A.*a - t l a l 2 - t i P I 2 - l a' l 2 - I P' I 2 

+ tP'*(a + P*) + ta'*(a* + p)]d2ad2ftdla'd2P' . 

We now make a variable change by defining 

}' = (a + P*)/2 
a = (y + <5) 

<5 = (a - P*)/2 

P* = (y - <5) 

Noting that R is an analytic function, the following i dentify is useful : 

R(a* , y) = � f R(a*,  P) exp (yp* - I P l 2)d2P . 

( 10.6. 1 8) 

( 10.6. 1 9) 

Hence, the above expression for the characteristic function can be simplified to 
give 
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XP(A.) = �3 Iff R(a'*, y) exp [A.(y - a)* - A.*(y + a) 

- I Y I 2 - l a l 2 - l a' l 2 + a'y*]d2yd2ad2a' 

= �z ff R(a'* ,  y) exp ( I A. I z + A.y* - A.*y - I Y i z  

- I a' 1 2  + a' y*)d2yd2a' 

= ! f R(a* ,  A. +  a) exp (-A.*a - l a l 2)d2a . 

Hence, 

( 10.6.20) 

( 10.6.2 1 )  

( 10.6.22) 

( 10.6.23) 

The last step follows from the identity with the characteristic function defined 
relative to the R-representation in ( 10.6. 1 7), Thus, we deduce that PP = p. 

10.6.3 Relation to Poisson Representation 

Given a probability distribution q(x) over the integers, we can always define a 
corresponding positive density matrix by 

P = :E I n) (n l q(n) ( 10.6.24) n 
and a P-representation for p gives the corresponding Poisson representation for 
P(n) ; thus, 

q(x) = (x l p l x) = (x l f dp(a, {J)P(a,{J) 1(j*<i:)l l x) 

e-aP(afJ)" 
= f dp(a, fJ) 1 P(a, {J) . 

X .  

Hence, one can write 

with 

( 10.6.25) 

( 10.6.26) 

( 10.6.27) 

( 10.6.28) 

and ap(a1 - a2) is a Dirac delta function defined with respect to the measure p(a1), 
i .e . ,  

( 1 0.6.29) 
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Thus, we can deduce from Theorem 3 that a positive Poisson representation always 
exists, as asserted in Sect. 7.7.4. The first theorem can also be adapted to show that 
a complex P-representation always exists if q(x) = 0 for x > N, for some finite N. 
However, a more general result has already been proved in Sect. 7.7.3. 

10.6.4 Operator Identities 

From the definitions ( 10.6.5) of the nondiagonal coherent state projection opera­
tors, the following identities can be obtained. Again, !! is used to denote (a, p) : 

aA(!!) = aA(!!) 
a+ A(!!) = (p + ajaa)A(!!) 

A(!!)a+ = PA(!!) 

A(!!)a = (ajap + a)A(!!) . ) ( 10.6.30) 

By substituting the above identities into (I 0.6.4) defining the generalised P-represen­
tation and using partial integration (provided the boundary terms vanish), these 
identities can be used to generate operations on the P-function depending on the 
representation. 
a) Glauber-Sudarshan P-Represeotatioo 
The same results as ( 10.2.26). 
b) Complex P-Representation 

ap +-+ aP(!!) 
a+ p +-+ (p - ajaa)P(!!) 
pa+ +-+ PP(g) 
pa +-+ (a - a;ap)P(g) 

c) Positive P-Representation 

J 
We now use the analyticity of A( a, p) and note that if 

a =  a,. + iay 

then 

(a;aa)A(g) = (a;aa")A(g) = ( - ia;aay)A(!!) 

and 

(a;ap)A(g) = (a;ap,.)A(g) = < -ia;apy)A(g) 

so that as well as all of ( 10.6. 3 l )  being true in this case, we also have 

( 10.6. 3 1 )  

( 10.6.32) 

( 10.6.33) 

( 10.6.34) 
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a+p - (p - ajaa,.)P(g) - (p + iajaay)P(g) 
pa - (a - a;ap,.)P(g) - (a + iajapy)P(g) . 

( 10.6 .35) 

All these correspondences can now be used to derive Fokker-Planck equations 
when appropriate. 

10.7 Application of Generalised P-Representations to 
Time-Development Equations 

We firstly want to show that the Glauber-Sudarshan P-representation will not 
always yield an acceptable Fokker-Planck equation, and that realistic situations 
arise in which this is the case. 

Consider a coherently driven single mode interferometer with a nonlinear 
absorber, for which we set [ 10.9] 

H1 = E lzwi(rtr� + D 
i 

Hz = E [(a+)2giri + a2g1*Tt] 
i 

( 10.7. 1 )  

( 10.7.2) 

( 10.7 .3) 

This is much the same as the example treated in Sect. 10.4. 1 .  In an interaction pic­
ture, we get the Master equation (assuming a zero temperature heat bath) and 
using ( 10.3 .38), 

( 10.7.4) 

Using the ordinary Glauber-Sudarshan operator correspondences, we would obtain 

:r P(a, a*) = [- :a (e - Ka2a*) - t :;2 (Ka2) + comp. conj.J P(a,a*). ( 10.7.5) 

In terms of real variables, 

x = (a + a*)/....12 
y = (a - a*)/i...jT . 

The diffusion matrix is 

r-K/2 
J -K 

-K] 
K/2 

( 10 .7.6) 

which is not positive semidefinite. Hence, a time development equation of the form 
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( 10.7.4) will develop singularities. We are lead, therefore, to alternative equations 
in the various P-representations. 

Naively following the rules which would apply if there was a positive 
semidefinite diffusion matrix leads to the stochastic differential equations 

( 10.7.7) 

where e,(t) and ez(t) are independent white noises. However, a paradox arises. 
Because e, and ez are independent, a and a* do not remain complex conjugate. 
We are lead to a similar situation to that of the Poisson representation, where 
negative diffusion matrices also turn up. 

We will show that ( 10.7. 7) is, in fact, correct, provided we make the replacement 
a* __,. P and they are regarded as variables of the positive P-representation. 

10.7.1 Complex P-Representation 

Here the procedure yields a very similar equation to that for the Glauber-Sudarshan 
case. We assume that, by appropriate re-ordering of the differential operators, 
We can reduce the quantum mechanical master equation to the form [where (a, p) 
= g = (am , a <2> ) ; J1. = 1 ,  2] :  

ap = I I A(g) aP(g) da dP ar c,c' ar 
= Ijc, {[A�'(g) a:�� + !D11"(g) a:�� a:.] A(g) JP(g)da dp . ( 10.7 .8) 

We now integrate by parts and, if we can neglect boundary terms which may be 
made possible by an appropriate choice of contours C, C', at least orie solution is 
obtained by equating the coefficients of A(g) :  

aP(a) [ a a a J --- = - - A�'(a) + .l -- D�'• (a) P(a) . at aal' - z aal' aa• - - ( 10.7.9) 

This equation is sufficient to imply ( 10.7.8), but is not a unique equation becuase the 
A(g) are not linearly independent. It should be noted that for this complex P­
representation, A�'(g) and D�'"(g) are always analytic in g ; hence, if P(g) is initially 
analytic, ( 10. 7.9) preserves this analyticity as time develops. 

10.7.2 Positive P-Representation 

We assume that the same equation ( 10.7.8) is being considered but with a positive 
P-representation. The symmetric matrix can always be factorised into the form 

( 10.7. 10) 

' 
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We now write 

A(g-) = Ax(g-) + iA,.(g-) 

Q(g-) = !!x(g-) + iQy(g-) , 

( 10.7. 1 1 ) 
( 1 0.7. 1 2) 

where A", A>', !!"' !!>' are real. We then find that the Master equation yields 

= f f P(g-)[A�(g-)a� + A�(g)a� + HB�IS B�ISa�a� 
+ B�'17 Bv17o>'o>' + 2B�'17 Bv17axfP..)]A(a)d2ad2P Y Y 1J V X Y 1J V - ' ( 10.7. 1 3) 

Here we have written, for notational simplicity, o/oa� = a�. etc, and have used 
the analyticity of A(g) to make either of the replacements 

( 10.7. 1 4) 

in such a way as to yield ( 10.7. 1 3). Now, provided partial integration is permissible, 
we deduce the FPE 

aP(g)Jat = { -a�A�(g-) - �A�(g) + ua�a��(g)B�(g-) 
+ 2a��B�17(g-)B;17(g) + a�a�B�17(g-)B;17(g-)]} P(g-) . ( 10.7. 1 5) 

Again, this is not a unique time-development equation but ( 10.7. 1 3) is a conse­
quence of ( I0.7. 1 5) 

However, the FPE ( 10.7. 1 5) now possesses a positive semidefinite diffusion 
matrix in a four-dimensional space whose vectors are 

( 10.7. 1 6) 

We find the drift. vector is 

( 10.7. 1 7) 

and the diffusion matrix is 

( 10.7. 1 8) 

where 

�(g) = [!!x, 
O
O
l

(g) 
!!J'> IJ 

( 10.7. 1 9) 

and � is thus explicitly positive semidefinite (and not positive definite). The cor­
responding Ito stochastic differential equations can be written as 
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or recombining real and imaginary parts, 

dgfdt = A(g) + !J(g)�(t) . 

( 10.7.20) 

( 10. 7.2 1 )  

Apart from the substitution a* - p, ( 1 0.7.2 1 )  i s  just the stochastic differential 
equation which would be obtained by using the Glauber-Sudarshan representation 
and naively converting the Fokker-Planck equation with a non-positive-definite 
diffusion matrix into an Ito stochastic differential equation. 

In our derivation, the two formal variables (a, a*) have been replaced by 
variables in the complex plane (a, p) that are allowed to fluctuate independently. 
The positive P-representation as defined here thus appears as a mathematical 
justification of this procedure. The procedure used closely parallels that of Sect . 
7.7.4. on the positive Poisson representation. 

10.7.3 Example 

We consider the example of Sect. I 0. 7. Using the appropriate operator correspond­
ence, the complex P-representation FPE is 

[ a 1 � a a P(a p) = - - (e - Ka2P) - - - (Ka2) - - (e - KaP2) I 0 aa 2 aaz ap 
I az 2 J - z apz <KP ) P(a, P> .  ( 10.7.22) 

Rather miraculously, we see that this FPE satisfies potential conditions of Sect . 
5 .3 .3 .  For, in that notation, 

[-Ka2 0 ] 
!J = 0 -KP2 

so, using (5 .3 .22,23), 
· 

2 [e/a2 - KP + K/a] 
z = 

-
� ef P - Ka + K/ P ' '· 

aza = az/= 2 ap aa 

and 

t/>(a, P> = - f (Zada + ZpdP) 
2e ( l 1 )  = - K � + 7J + 2 log (ap) - 2ap , 

( 10.7.23) 

( 10. 7.24) 

( 10.7.25) 
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so that 

P.(a, p) = (ap)-2 exp [ 2aP + � (! + �) J . (10.7.26) 

The only acceptable contours for this stationary distribution are C, C' which are 
independent contours in the a and p planes which encircle the essential singularities 
at a = 0 and p = 0. 

A potential solution of this kind is extremely useful and could not be obtained 
with the Glauber-Sudarshan P-representation. The moments can be obtained 
from 

( 10.7.27) 

and we can expand exp(2ap) in power series and contour integrate term by term, 
to obtain 

(2e ) n+m-2r-2 
2, ((a+)ma") = ± K 

r=O -, !:-:-(n---,
'---'

---:-:-1 )-:-! -:-( m--,-_----:-1:-o) !  

which i s  an easily computed series. 

( 10.7.28) 

Using the positive P-representation, we obtain the stochastic differential 
equation 

[da] [e - Ka2P] . _ [a dW1(t)] = dt + I ../K . 
dp e - KafJ2 P dW2(t) 

( 10.7.29) 

It should be noted that this equation does not contain any very obvious small 
noise parameter. However, a large driving field l imit can be obtained by setting 

a = lie ( 10.7.30) 

P =  Pe 
so that 

( 10.7.3 1 ) 

A small noise l inearisation process can be carried out in this limit of large driving 
field and small nonlinearity which is, in fact, a situation of practical utility. 


