10. Quantum Mechanical Markov Processes

Quantum mechanics, since the very early times in the 1920’s, has been recognised
as a description of the world which contains an essentially statistical aspect. Hence,
all quantum mechanics must be regarded as being some kind of stochastic process.
However, what is essentially unique to quantum mechanics is the description in
terms of complex probability amplitudes, the square of whose modulus gives the
actual probability of occurrence of an event.

The formulation of a proper quantum mechanical probability theory, or of
quantum mechanics in terms of appropriately defined stochastic processes in this
generalised probability theory, is not the aim of this chapter. What is of interest is
the introduction of the reader to the rather fascinating world which straddles the
boundaries of quantum and classical probability theory. This world is the realm of
quantum optics and quantum electronics, where there are statistical aspects arising
from the intrinsic quantum nature of the system, as well as fluctuations arising
from thermal effects. We shall show how the quantum mechanics of optical systems
can be related closely to Markov jump processes in a suitably generalised form,
which can themselves very frequently be related by means of what are known as
P-representations or otherwise, as phase-space methods, to diffusion processes in the
complex plane. These diffusion processes can describe quasiprobabilities which
may be negative or complex, or they may define genuine positive probabilities. The
situation is very similar to that of the Poisson representation of Sect. 7.7 which is
itself, in fact, a restricted form of P-representation.

We will formulate this chapter as follows. We first outline the quantum
mechanics of the harmonic oscillator and introduce the concept of coherent states,
which are central to the task. We then define a quantum Markov process and
show how generalised Master equations can be derived for these, in a manner
similar to that of the adiabatic elimination methods of Chap. 6. From these
generalised Master equations we can sometimes develop ordinary birth-death
Master equations, and sometimes, by using P-representations, we can develop
Fokker-Planck equations. Both methods allow us to apply all the apparatus of
classical stochastic processes to these quantum mechanical systems.

10.1 Quantum Mechanics of the Harmonic Oscillator

We describe the Harmonic oscillator in terms of creation and destruction operators
a* and a which satisfy the commutation relations

[a, a*] = aa* — ata=1 (10.1.1)
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374 10. Quantum Mechanical Markov Processes

and from which it can be shown that there are eigenstates |#) of a*a such that

atalny =n|n) n=0,123, ... (10.1.2)
almy =/nln—1 (10.1.3)
atln) = /n+1|n+1)

and
n|lm) = 6p,, . (10.1.4)

The operator N is defined by
N = a‘*a (10.1.5)

and is known as the number operator since from (10.1.2), its eigenvalues are the
integers n.
The Harmonic oscillator itself is defined by the Hamiltonian

H = (a*a + Hhw where (10.1.6)
h = 2nh (10.1.7)
is Planck’s constant and w is a frequency. The eigenstates of H are |n) of course,

and the eigenvalues of H are
E, = (n + }how . (10.1.8)

Dynamics is introduced by Schrédinger’s equation which determines the time
development of any physical state | A, ).
It takes the well known form

H|A, t) = ihd,|4, 1) . (10.1.9)

The orthonormality property (10.1.4) means that we can expand any state in terms
of the energy eigenstates |n),

[A, t) =D |n) {n|A, t) (10.1.10)
and hence,
iho,| A, t) = ik ) |n)o,{n| A, t)
= > H|n) {n|A, t) (10.1.11)
= 3 (0 + Dholn) (nl 4, 1)
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so that

(n|4, t) = e E*{n| A, 0>

10.1.12
= e-in+1/2) wt (nlA, 0) . ( )

Hence, the time development of an arbitrary state is now completely determined.

10.1.1 Interaction with an External Field

A semiclassical problem is that of the interaction of the harmonic oscillator with
an external field. Without going into the physics too deeply, we simply state that
this is done by modifying the Hamiltonian (10.1.6) to

H(e) = [(a*a + }) — (ea* + a*a) + |e|*]hw (10.1.13)

where « is a complex number. The three parts may be regarded, respectively, as
the harmonic oscillator energy, the interaction energy between the driving field
a and the oscillator, and finally the (constant) energy of the driving field.

H(a) can be advantageously rewritten:

H(a) = hol(a — a)*(a — a) + 3]. (10.1.14)

It is obvious that the operators (@ — a)* and (@ — a) obey the same commutation
relation as a* and a, since « is a mere complex constant. Hence, the energy eigens-
tates have the same form, since the existence of states |n) follows from the
commutation relation only.

Equation (10.1.3) can be used to define the ground state or vacuum state, |0)
of a*a by

al0) =0. (10.1.15)
The corresponding equation for the shifted operators (@ — a)*, (@ — ) is

ale) = ala) . (10.1.16)
We can check from (10.1.3) that a solution for |a) is

|a) = exp (=}lal) 3 ) (10.1.17)

=04/ n!
where the precise factor exp (—4|a|?) is chosen so that
(ela) = 1. (10.1.18)

The states |a) were devised by Glauber [10.1], and are known as coherent states.
When the harmonic oscillator is regarded as a model of the radiation field in a
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single-mode system, the coherent state can be regarded as a quantum mechanical
state which approaches a classical state.

The energy eigenstates of the Hamiltonian H(a) will now be |n;a) and will
have the same properties as (10.1.2-4) butare written in terms of the shifted opera-
tors (@ — @)* and (a — a).

10.1.2 Properties of Coherent States

We list the most important properties; no proof is given if the result is a simple
matter of substitution of definitions.

a) Definition: |a) = exp (—5|a|2)§\—;% 1) . (10.1.19)
b) Scalar Product: <a|B> = exp (a*B — }|a|* — §|BI%) (10.1.20)
<l By |? = exp(—|a — BI?). (10.1.21)
¢) Completeness Formula
I =1 [ dala) (el (10.1.22)
Here,

a=a,+ia,,

(10.1.23)
d*a = da.da,

and the integral is over the whole complex plane. We prove this. For, if |4) is
an arbitrary vector, then write

| 4> =3 Aa|n) (10.1.24)
so that
L [ d%ala) (a4 = —nl—;fma) (a|nyd?a . (10.1.25)

Substitute (10.1.19) and change to polar coordinates by

a = relf (10.1.26)
d*a=rdrdb. (10.1.27)
Hence,

(10.1.25) = L 5 [a,e-2rmm ettm=m0(n) m1)~112 | myr dr df

(10.1.28)
=23 [ A%+ (n) |n) dr
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where we used

26,m =1 [doermms, (10.1.29)
Now noting

Idr e-r2pntl — 12, (10.1.30)
we find

(10.1.25) = 3 4, |n) = | 4> . (10.1.31)

Formulae (10.1.21,22) together indicate that the coherent states are not orthogonal
for different @ and B, and that since there is a factor 1/x in front of the integral
(10.1.22) the coherent states are overcomplete [in fact, for any r, (10.1.19) shows
that we can write

|ny = exp (3r2)r~" o/nT | d6e="?|a) (10.1.32)

which indicates that the states for any fixed »r = |a| are complete]. This overcom-
pleteness is, however, not a disadvantage because of the very simple connection
between coherent states and the physics of classical fields, and because of the fact
that the Bargmann states, defined by

_ 2 . L all
lla) = exp(}|a|?)|a) =L (10.1.33)
are analytic functions of a. This property is very important in what follows.

d) Expansion of Arbitrary States in Terms of Coherent States
Consider an arbitrary state |f). Then using the completeness relation, (10.1.22)

1> =L [ d%ala) fla*) exp(— 41al?), (10.1.34)
where
fla*) = (e|f) exp (}|a|?) = Lall /> (10.1.35)

is an analytic function of a*. With this proviso, the expansion (10.1.34) is unique.
If functions of both a* and a are permitted, the expansion is no longer unique,
as Glauber shows.

The scalar product of two states |, ) and |g) is straightforwardly shown
to be

Gl =+ [ da [ga®)]*fa*) e (10.1.36)

S
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378 10. Quantum Mechanical Markov Processes

which is obviously a Hilbert space of analytic functions. It provides, in fact, the
soundest mathematical starting point for the study of the harmonic oscillator,
the creation destruction operators and all the formalism of this chapter.

¢) Expansion of an Operator in Coherent States
Consider any operator T in the quantum Hilbert space. Using the identity resolu-
tion twice,

T=1.T-1 =1 [ d%d®f |ay¢a| T BY¢BI

= ;ﬁzj‘d’ad’ﬂlaXﬂlT(a*, B) exp(—%|e|* — 4| B1%) (10.1.37)
where
T(a*, B) = exp (3|a|® + }1B|*)<a| T8>
= <allTIIB>

and from the analyticity of the states ||a), ||8), we see that T(a*, B) is an an-
alytic function of a* and B, and, with this proviso, is unique. Notice, for example,
that if

(10.1.38)

T = (a*)"(a"), (10.1.39)
then
T(a*, p) = Lal(a*)™(a”)| B> exp (1 |«|* + 3|B1%)

= (a*)"(B){a| B> exp(}|a|® + £1B1%) (10.1.40)
= (a*)"(B)" exp(a*p) .

f) Any Operator T is Determined by Its Expectation in all Coherent States
For

{a|Tla) = 3 {n| T|m) " (a*)"(a)"//nim!
so that

{n|T|m)y = /nTm! 108 gm—(efm"‘<a| T|a)) (10.1.41)

7 0a*" Gam ’ o

The derivatives are formal derivatives and, as in analytic function theory, are to be
interpreted as

a=x+1iy
d_ 1 (o . d
2= (’a}‘c“ '@) (10.1.42)

0

a* —;_(ga)—c+l%)

(<3}
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in which case, {n| T|m) are the combinations of coefficients of power series in real
variables x and y.

g) Coherent States are Eigenstates of a
Namely,
ala) = ala)
and (10.1.43)

(a|a* = {a|a*

which are proved directly from the definition and was the original basis for investi-
gating them. In evaluating matrix elements, normal products of operators in which
all destruction operators stand to the right of creation operators, are useful. Thus,

(a|a*aa*|B) = {a|a*a*a + a*[a, a*]| B>
= {a|a*a*a + a*|B) (10.1.44)
= (a*’f + a*){a|B) .

The symbol: : around an expression means that it is to be considered a normal
product: thus,

(a+ a*) (a@a+ a*): =a*?* + a* + 2a*a. (10.1.45)

h) Poissonian Number Distribution of Coherent States

The state |n) is known as an *“‘n quantum state” since its energy is nfiw more than
that of the vacuum |0), the zero quantum state. In quantum mechanics, therefore,
the probability of observing n quanta in a coherent state |a) is

— — 12 a"_ z
P,(n) = |{(n|a)|? ‘exp( 1a?) \/n!} (10.1.46)
= e_"_“'_nl’_aﬁ (10.1.47)

which is a Poisson distribution with mean |a|2
Since the number n corresponds to the eigenvalue of the number operator N,
we have

(Ny = {a|N|a) = 3 nP(n) = |al? (10.1.48)

{N?*) = {a|a*aa*a|a)
= {a|a*a*aa + a*[a, a*)a|a)
= la|* + |a|?.

Hence,

b s e
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380 10. Quantum Mechanical Markov Processes
(N(N=1)) = |a|* = (N)? (10.1.49)

as required for a Poisson. The Poissonian nature of the probability distribution
of quanta in a coherent state is what provides the link with the Poisson representa-
tion.

10.2 Density Matrix and Probabilities

The usual quantum mechanical formula, that the mean of a quantity M in a state
|w) is given by

My =Ly |Mly), (10.2.1)

provides only for experiments in which the identical quantum state is measured
repeatedly. A more usual possibility is that, due to the random nature of state
preparation, which may arise from thermal effects or simply from inadequate
preparation apparatus, we measure means in different states |y,) each time we do
a measurement. Then in this case, if each state occurs with probability P(a), this
probability not arising from quantum effects but simply arising from the random-
ness of state preparation, the measured mean is

M) = 3 P(a)<ya| My, . (10.2.2)

One now introduces the density matrix (or operator) p by
P =2 P@lva)y.l (10.2.3)
through which

(M) =Tr{pM}. (10.2.4)
Here, for any operator B, we define the trace operation Tr by

Tr (B} = 3. (n|B|n) (10.2.5)

n

so that
Tr{pM} = 3 P(@)n|wa)<ya| M|n)
= 2. P@)<y.| M|n) {nlva)
=2 P@<y. | Ml
=(M).

An important property of the trace is its invariance under cyclic permutations of
factors so that
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Tr {pM} = Tr{Mp} (10.2.6)

Tr{ABCD} = Tr{BCDA]}, etc. (10.2.7)
Important Density Matrix Properties:
i) Tr{p} =1 (10.2.8)
for

Tr{p} = L PWalvay =X Pa=1. (10.2.9)
i) p is positive semidefinite; for any state | 4),

(A|plA) = D PIAly>|* > 0. (10.2.10)

iii) If p corresponds to a pure state, then p*> = p and conversely, for a pure state,
P, = 4,,q, for some a,, so that

P* = Wap) Wap|WadWaol =P (10.2.11)
Conversely, consider
PP =3 Pa Polyad)wsl walws) - (10.2.12)

This equals p only if

P,Pyysl|wsy =0 fora + b
Piy,|ly.) = P,

But
Walvad =1,
hence,
P2=p, —P,=1 or 0.

But since > P, =1, only one P, can be one, and the others zero, which corresponds
to a pure state.
iv) Tr{p?} < Tr{p}, with equality only for a pure state.

For,

Tr{p?’} = ﬁ‘:‘; PPy | walys |? (10.2.13)
and since

[walw | < 1 (10.2.14)
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2P| walwy|*< 1, foranya. (10.2.15)
[]

Therefore,
Tr{p?} < X P, = Tr{p} (10.2.16)

and it is clear that (10.2.15) can only be an equality if
Py = 04,4,
for some a,, i.e., p is a pure state.
10.2.1 Von Neumann’s Equation
The Schrodinger equation is
H|y) = iho,|y) (10.2.17)

for any state. A corresponding equation for the density operator can be derived.
For,

0p = X Pl@:wad)wal + 1wa @yl

= 5 Hp — pH).

That is,

[H, p) = ikd,p (10.2.18)

which is von Neumann'’s equation or the quantum Liouville equation. Von Neumann’s
equation can be exponentiated to give the formal solution

p(t) = exp(—iH1t/h)p(0) exp(iHt/h) . (10.2.19)

10.2.2 Glauber-Sudarshan P-Representation

Glauber [10.1] and Sudarshan [10.2] introduced a representation for the density
matrix now known as the Glauber-Sudarshan P-representation. One assumes that p
can be written as

p = [ d*a P(a, a*)|a){a| (10.2.20)

where P(a, a*) will play the role of a quasiprobability. Questions of existence of
this P-representation we leave aside for the moment.
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Notice that since
L = (ala) = 3 (almynla)
Tr{p} = 1 = [ d*a P(a, a*) ;‘, {n|a)la|n)

i.e.,

1 = [d? P(a, a¥). (10.2.21)

Further, for any normal product (a*)"a’,

Tr{(a*)ya'p} = Tr{a'p(a*)’}
= [ d*a P(a, a*) Z (n|a’|a) <al(@) |7},

i.e.,

{a*)ay = [ d*a(a*) a’P(e, a*). (10.2.22)

Thus, the quantity P(a, a*) plays the role of a kind of probability density for the
variables @ and a*, in that the means of normally ordered products of quantum
operators are simple moments of P(a, a*).

The conditions under which a Glauber-Sudarshan P-representation exists are
problematical. Klauder and Sudarshan [10.3] have shown that, providing sufficiently
singular generalised functions are chosen, it always exists. It certainly does not
always exist as a positive function, nor indeed as a smooth function.

For the moment we will leave aside these questions, the answers to which are
very similar to those for the various Poisson representations of Chap. 7.

10.2.3 Operator Correspondences

We know that

ale) = a|a)
and (10.2.23)

(ala* = a*{a| .

For the other possible ways of acting with the a, a*, it is convenient to use the
Bargmann states ||@) so that

a'lley = £ T VAT 1 In+ 1)
’ (10.2.24)

0
= 5all®>

Similarly,
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d
Calla = 505 el

Hence, we can write for a p representable by a P-representation which can be
conveniently transformed, for this purpose, to the form

p = [ d%allay<alle™* P(a, a¥) ,

a simple equation,
+ 2 a —aa¥
a*p = [ da - (la)) (alle™* Pla, a*),
and integrating by parts
= [d%l|a) {al| e~==* (a* _ (—%) P(a, a*). (10.2.25)

We thus can make an operator correspondence between a* and a* — 9/da. A similar

formula holds for a. Summarising, with the obvious correspondences arising from
(10.2.23,24), we have

ap e aP(a,a*)

atp & (a* - a%) P(a, a*)
(10.2.26)
pa (a — ‘%:) P(a, a*)

pat — a*P(a, a*).

10.2.4 Application to the Driven Harmonic Oscillator

We consider the Hamiltonian

H = aw(a*a + }) + (Aa* + 1*a) (10.2.27)

for which the quantum Liouville equation is
in22 = hola*a, p) + Ala*, p) + A*(a, ). (10.2.28)

We now turn this into an equation for P(a, a*) by using the operator correspond-
ences (10.2.26). Thus,

atap — (a* B (%) P (10.2.29)

s
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—pata— — (a _ 52;) a*P (10.2.30)

[notice that the order of the operators in (10.2.30) reverses, since acting on p they
operate from the right, whereas on P, they operate from the left]:

e[~ 2) ]

(10.2.31)
=-2p.
Similarly,
[a, p] — LT P (10.2.32)
Oa*
so that we find |
g=i(—w%a+w&%‘a*-—;—£+%%)P. (10.2.33)
This corresponds to a Liouville equation for the variables. A word of caution. It
is tempting to treat @ and a* as independent variables which is not strictly true,

and in writing all the above correspondences, one should really write

a =x+iy )

a*¥ =x—1iy |
a (8 .9 (10.2.34) |
aa“*(ax ‘ay)
ERENTINN |
aa*‘*(a +'ay)
and

A=u—+iv,

and in terms of these real variables, (10.2.33) becomes

F = [y +vi) = 5 @x + win)] P (10.2.35)

which is a Liouville equation, equivalent to the differential equations

% = —wy —v/h

(10.2.36)
dy _
P + plh
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which are equivalent to

Z—j’ = i(wa + A/H) (10.2.37)

with the solution
a = —Affiw + Leler . (10.2.38)

The solution for P is, assuming a deterministic initial condition,

Pla, a*, 1) = & (x _ Re{— h—’lw n Ce“”‘” S(y — Im [— %’ + ée‘“”” (10.2.39)
= 5%a + Afhw — Eeior), (10.2.40)

where the complex delta function is understood to mean (10.2.39).
Notice that A may depend on time, in which case (10.2.37) becomes

5—;’ — ilwa + A@)/A] (10.2.41)

whose solution is
a(t) = a(0) el + i [ dt’ el (414 (10.2.42)
0
and the corresponding P is
P(a, a*, 1) = 8*[a — a(t)] . (10.2.43)

10.2.5 Quantum Characteristic Function

The Fourier transform of P(e, a*) would provide a natural characteristic function
like that introduced in Sect. 2.6. Let us define

x(A, 2*) = [ d%a exp (Aa* — i*a) P(a, a¥) . (10.2.44)

Notice that if

a=x-+1iy
A=u+1v,
then
Aa* — A*a = 2i(vx — yu) (10.2.45)

so that (10.2.44) is a Fourier transform in two real variables. It is also possible to
write
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x(A, A*) = Tr{p exp(Aa*) exp(— A*a)} (10.2.46)

which can serve as a general definition of the quantum characteristic function.
Notice that for any operator 4,

Tr{d) = 3 (1l A|n) = & [da 3 nla) Cald|m)
= L [d%a S Cal A|my Cnlay

Tr(d) = — [ da (a| A|a). (10.2.47)

We now introduce the Baker-Hausdorff formula [10.4]. For any two operators
A and B such that their commutator [4, B] commutes with both of them, One can
write

exp(4 + B) = exp(4) exp(B) exp(—3}[4, B))

(10.2.48)
== exp(B) exp(4) exp([ 4, B]).

Noting

[Aa*, —A*a] = |1|?,
we see

exp(la*) exp(—A*a) = exp(—A*a) exp(la*) exp(| A]?).
Hence,

Tr {p exp(Aa*) exp(—A*a)} = exp(|4|2)Tr{p exp(—1*a) exp(la*)}
= exp(| 1|*)Tr {exp(1a*) p exp(—4*a)}

— R  frdalexp(ia®) p exp(—1%a)]ad

SO

X(, A%) = e"p(-ii~'f)- [ d*a exp(ia* — A*a)alpla) . (10.2.49)

Since

(alpley >0 (10.2.50)

w———J
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and

Tr{p} =%_fd"a la|pla) =1, (10.2.51)

(10.2.49) is a Fourier transform of a function {a| p|a) which satisfies the conditions
of a probability function. Hence, the Fourier transform y(A,A¥)exp(—|A|?) is its
corresponding characteristic function and from Sect. 2.6, it determines {a|p|a)
with probability one.

From Sect. 10.1.2, we then see that (a|p|a) determines p. Hence, y(4, 1¥)
determines p with probability one.

10.3 Quantum Markov Processes

We now briefly develop a simplified form of the quantum theory of damping. This
requires some knowledge of quantum statistics.

10.3.1 Heat Bath

Damping, in practice, occurs because a system interacts with another very large
system known as a Heat Bath, into which the energy of the system is dissipated.
However, noise arises also, since the heat bath distributes some of its energy
back into the system.

As a model of a heat bath, consider a large number of independent harmonic
oscillators with operators I'; and Hamiltonian

HB = ‘Z hw‘(r‘+r{ + %) . (10.3.1)

This system does, in fact, possess a stationary density matrix ; indeed, any positive
function of Hy is satisfactory. Statistical mechanics allows us to choose a canonical
ensemble in which the density operator is

p(T) = exp(— Hp/kT)/Tr {exp(— Hy/kT)}, (10.3.2)
where T is the temperature of the heat bath. It is trivial that

[(Hg, p(T)] = itd,p = 0. (10.3.3)
Because Hy is the sum of terms which commute with each other, one can write

p=I1,AT)

with

pT) = exp [— ’;‘C—“;(rrr, n i)} /Tr[exp [— %"f’(rrr, + %)}] . (10.3.4)

TISPREREEY
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Further define

Z, = Tr[exp[— %9—]),‘(1‘;“1", + %)]} = ;‘,exp[-—Q’——_—*‘k—;{)—h—cﬂ ]

i.e.,

_ exp(—w,2kT)
Z(D) = | 2 halkT)" (10.3.5)

The mean number (n,(T)) is also useful and is defined by

Ty = Ity = Snexp| - CE) 127y,

ie.,

(n(T)y = [exp(hakT) — 17" . (10.3.6)

Further items of use are the bath correlation functions. To obtain these we define

I(t) = exp (' ’;B’) I exp (— ! Z“’) — exp(— iwyt) T, (10.3.7)

so that the bath correlations are

(T = e Ifr;) =e@ §,(n(T))
L) =TErf) =0 (10.3.8)
LIy =e™@t (T + 6,y =e ' 6,[{n(T)) + 1].

10.3.2 Correlations of Smooth Functions of Bath Operators
Consider a variable
y(@) = 30 s, () eivor, (10.3.9)

(The factor exp (iw,t) is inserted with a view to the application in Sect. 10.4.2).

)y =0
Y@yO) = @y (©0) =0
W) = 35 15| *¢ndT)) expli(en — wo)t] (10.3.10)

GO = 33 |5 *nT) + 1) exp[— i, — wo)i].
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Suppose now that the modes i are spaced closely together so that w, is a smooth
function of /.
Then we relate the variables thus.

51— s(e;) — s(w) (10.3.11)

{n(T)y — Ln(wy, T)) — {n(w, T)) (10.3.12)
and

2 [s:]2(..) — [ dow S(@) (...) . (10.3.13)

For sufficiently smooth functions {n(w, T)), S(w), the correlation functions are
rapidly exponentially decaying functions of # For example, consider

O ()y0)) = Idw S(w)<{n(w, T)) expli(w — wy)t] (10.3.14)

If, as is usual, S(w){n(w, T)) is a smooth function of w, then its fourier transform
is a correspondingly rapidly decaying function of ¢. Thus, the correlation function
(10.3.14) will be of the form of a rapidly decaying function of ¢, multiplied by
exp(— iwpt).

This is reminiscent of the relationship between correlation function and
spectrum presented in Sect. 1.4.2, but here we have exp [i(w — w,)t] rather than
cos wt, and the correlation function is complex.

10.3.3 Quantum Master Equation for a System Interacting with a Heat Bath

We shall now show that when a quantum system interacts with a heat bath, we can
apply the adiabatic elimination methods of Sect. 6.6 to develop a quantum master
equation. The Laplace transform method used here is not the most usual, but it
gives the answer very quickly and quite precisely.
We suppose the system is described by operators 4, A*, which can obey any
commutation relations, and the bath by harmonic oscillator operators I';,I",*.
The Hamiltonian is considered to be able to be written

H=yH, + yH, + H; . (10.3.15)
H, is a function of 4, A* only. H, can be written
H, =3 (Cal* + C*g*r) (10.3.16)
i

where C is a function of 4 and A*. Here g, may be a function of time. H, is the
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bath Hamiltonian and has the form (10.3.1), though even this is not absolutely
essential. The system and bath operators commute, and each acts in its own space.
Thus, if H, is set equal to zero,

p = ps X Ps (10.3.17)

and

., 0
in 228 — y2(H,, pg]

o (10.3.18)
., 0P,
lh a_p’ = [th ps]
and strictly speaking, we should write
p=ixd (10.3.19)
1-', . f, X 1

to indicate that each operates in its own space. The parameter p is introduced to
formalise the fact that the procedure is valid when the bath variables have a much
faster time scale than the system variables, and that the g;, to give a finite limit,
must be considered to become large also. The exact implementation of this limit in
a practical case depends on the knowledge of suitable variables which become
large.

Then the equation of motion for the density matrix can be written

%’;’ = (’Ly + 7L, + Ly)p (10.3.20)
where
Lp=—5[H,p, (10.3.21)

The operators L, are known as Liouville operators, and are linear operators.
Equation (10.3.20) is now in exactly the right form for us to apply adiabatic elimina-
tion techniques, provided we can define a suitable projector. We choose a projector
of the following kind:

Pp = p(T) x Trg{p} = p(T) X p, (10.3.22)

where p(T) is defined by (10.3.2), and by Trgy we mean the trace only over the bath
states. That is, a complete set of states for the systems and bath can be written

| ng, 1) and
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Trg{d} = EB_] {ng, n;|A|ng, n,) .
P is obviously a projector and
LiPp = —+-[Hy, p(T) X Trap] = 0
since H, operates only on bath states. Also
PLip = =5 p(T) X Try{{H, pl} =0

so the requirement
PL] = LIP = O

is satisfied.

We now check whether PL,P vanishes, i.e., what is

- '7 P(T) x Trg{[H,, p(T) X pl}.

If we substitute a typical term from H,, namely, CI'% into this we get

— = A(T) X Tra{T1p(T) X Cp — p(TI X fC}

and obviously
Tra{I$p(T)} = Trs (T} =0.

Similarly, all other terms vanish.

(10.3.23)

(10.3.24)

(10.3.25)

(10.3.26)

(10.3.27)

(10.3.28)

(10.3.29)

We can therefore carry out the same adiabatic elimination procedure as in

Sect. 6.6 to obtain

d
37 [P(T) X pl = Lsp(T) X p — PLLi'Lp(T) X p

which reduces to

(10.3.30)

(10.3.31)

This can now be reduced explicitly to a simpler form. However, we must first deal

with L7 In Sect. 6.6 we used the relation




10.3 Quantum Markov Processes 393

L;'(1 — P) = [etvd(l — P) (10.3.32)

[}

whose truth depended on the truth of

lime%'(1 — P)=0

e
which arose from the assumption that L, had negative eigenvalues.

Such a strong result is not in fact needed here — all that is needed is that the
particular traces of I';,, I'} over the bath in the stationary density operator p(T)
vanish at large ¢ and this will occur if the particular linear combinations which turn
up, namely, > g.I"}, etc, have coefficients g, which satisfy the smoothness condi-
tions for S(w) discussed in Sect. 10.3.2. However, we leave the detailed checking of
this to the reader and adopt (10.3.32).

We note that for any operator 4, we can define

A(?) = e=v4 = exp(iH, t/h)A exp(— i H,t/h) (10.3.33)

which is a notation in agreement with (10.3.7). A proof is obtained by explicit
differentiation and definition of L,:

dA() i _
dr = 7 Wy AWl = —LAQ@). (10.3.34)

We can now proceed:

—Trg {L,L7 ' Lop(T) X p)

— 2] T (U, €M H, p(T) x ple)dr
= == ] Tra e Hyemmm, [Hy, p(T) x Il dt (103.35)
0
l oo
= o _‘[ Try {;[Cgi F(t)+ Crgrrr), [ngrf + C+gf['j, p(T) x pll}at.

There are 16 terms in this expression. However, only those involving a I"and a I'*
will be nonzero. Consider the particular term

l oo
7 Tra {32 Cal (C g} Tp(T) % p

which, with the identification g¥ — S,, w, — 0 from (10.3.9), we can write in terms
of

() = 3 gfry). (10.3.36)

We introduce a notation similar to that normally used in quantum optics, namely,




394 10. Quantum Mechanical Markov Processes

1

s [ dr HepO) = 4K + 8

[...:«-

dt (y*O)()y = KN — io

o—38

2

-

(10.3.37)
dt (Y (0)) = KNV + 1) — id’

ot—g

1
”

;[ dt O ) = 4K + 1) + 6"

u-]._.

The double commutators can be evaluated, and we find that the Master equation
reduces to

ap i . :
%_ _ L, p—ieicec, o+ istect, )
LK(1 + N) (2CpC* — C*Cp — pC*C) (10.3.38)
+ LKNQ2C*pC — CC*p — pCC*) = Lp.
Comments

i) The Master equation in the above form is conventionally derived by methods,
not using the Laplace transform, but using essentially only time domain equations.
See, for example, the work by Louisell [10.5]. Our derivation relies on L; being
very much less than 2L, and, in practice, in optical situations this is not so, since
H, represents a rapid oscillation which decays quite slowly as a result of the
interaction with the heat bath. This can usually be taken account of by introducing
the interaction picture and the result is a Master equation of the form (10.3.38) in
which explicit time dependence of g, occurs and w, in (10.3.9) is the natural
frequency of the free motion. This procedure is demonstrated in our treatment of
the two level atom in Sect. 10.4.2. It is not our aim to give a full and detailed ac-
count here, and the reader is referred to Louisell’s work for a full explanation.

ii) The Master equation (10.3.38) can be regarded as the definition of a quantum
Markov process, which is simpler from a mathematical point of view. The quanti-
ties H; and C specifying the free motion and the interaction with the heat bath
are quite arbitrary, as is their relationship to each other. Notice, however, that the
definition is incomplete without a specification of how to define multitime averages;
in other words, to define an analogue of the multitime joint probabilities which
are basic to ordinary stochastic processes.

iii) In a zero temperature bath, p; = |0) (0| and all averages of I'*I" vanish.
This means that

T=0—=>N=0 (10.3.39)

and the third line does not contribute. This line, therefore, is related to thermal
noise.
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10.4 Examples and Applications of Quantum Markov Processes

10.4.1 Harmonic Oscillator
Here we take

C—a

Ct —qat

[a, a*] =1

H; = ho(a*a + }) .

(10.4.1)

Using the commutation relations, we find that (10.3.38) reduces to (where we now
write simply p instead of p.)

P — iwlaa, ol
+ K(N + 1) Qapa* — a*ap — pa*a)
+ yKN(Qa*pa — aa*p — paa*), (10.4.2)
where

o'=w+d—179.
a) Diagonal Matrix Elements
The diagonal matrix element

{n|p|ny = P(n) (10.4.3)

represents the probability of there being n quanta in the system. We easily check
that (using the properties of a* and a defined in Sect. 10.1)
8, P(n) = K(N + D)[(n + 1)P(n + 1) — nP(n)]
+ KN[nP(n —1) — (n + DP(n)] . (10.4.4)

This is an ordinary birth-death Master equation. Notice that the transition prob-
abilities have the form

t*(n) = KN(n + 1) (10.4.5)
t=(n) = K(N + Dn

so that the probability of creating a quantum has a part proportional to (n 4 1).
A chemical reaction of the form

B=—4& (10.4.6)
A+ X—2X

would have a similar Master equation.

s
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The solution in the stationary state is

ron= (7)) T

This is the usual Boltzmann distribution, in which one can identify

N
fTﬁ == exp(—h(o/kT)
which means

N = 1/[exp(fiw/kT) — 1]

which determines N in terms of T, or conversely. We note that

(ny, =N
var {n}, = N%.

b) Fokker-Planck Equation from P-Representation

(10.4.7)

(10.4.8)

(10.4.9)

(10.4.10)

We use the Glauber-Sudarshan P-representation from Sect. 10.2.2 and the operator
correspondence from (10.2.26) of Sect. 10.2.3. Remembering that operator products
written on the right of p are reversed in order when the correspondence is made,

we derive the Fokker-Planck equation for the P function:

‘?; [gx(ia +a—a*) — iw (ai az*a ) + KN o %2

;| P

This is a form of complex Ornstein-Uhlenbeck process. For we can write

a=x+ iy
and

9o = 30, — id,)
and get

ar ay x? "3y ox* " ay

op i.K[(_a_x-i——a— )-l—w'(-?— —iX)-F]—Z‘(i‘*"Q;”P-

(10.4.11)

(10.4.12)

This result is very simple compared to the Poisson representation Fokker-Planck
equations which always involve nonconstant diffusion terms. The stochastic dif-

ferential equations equivalent to (10.4.12) are

g
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dx = —(3Kx + wy)dt + VN dW\(t)

(10.4.13)
dy = —(3Ky — wx)dt + VN dW(t) .

These represent the equations for a damped oscillator, very like those considered
in Sect. 5.3.6d.

These are often written as one complex Langevin equation:
da= — (3K — iw)a dt + / Fdn(1), (10.4.14)

where dy(¢) is the increment of a complex Wiener process satisfying

dn(t)y = Ldn*(t)) = Ldn(t) dn(1)y = Ldn*(t) dn*(t')) =0

10.4.15

dne) dp@) = dt (19419
and explicitly given by

dn(t) = [AdW\(t) + idW ()]~ 2 - (10.4.16)

The use of the complex dr(¢) is not very easily generalised and we will not use them
any further. However, the complex variable FPE is useful, and will be maintained.

The solutions of the Ornstein-Uhlenbeck process are given in Sect. 4.4.6. We
find

{a(t)y = a(0) expl—(K/2 + iw)t]
(a*(D)alt)y = (a*(Oa(0) e + N(1 — %)

@ = @, =0
{aa*), = {a*a), = N.

(10.4.17)

(10.4.18)

Only when N = 0 do we find that {a*a), vanishes, i.e., at zero temperature. The
time correlation functions of this Ornstein-Uhlenbeck process require interpreta-
tion which will be done in Sect 10.5.

¢) Inclusion of a Driving Field
Suppose we consider the driven damped harmonic oscillator obtained by choosing

H; = hw(a*a + 1) + #(ea* + c*a) (10.4.19)

which represents a quantised oscillator interacting with a nonquantised field
(Sect. 10.1.1).

The FPE develops an extra term

(is a% iy a% P (10.4.20)

which allows the FPE to be written.

m
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[(}K lco)a (a+%Ki8 )

+ (K + i0) 52 (a*

aP

)+KN a ]P (10.4.21)

%K—i—w dada*

which again represents an Ornstein-Uhlenbeck process, but with the origin shifted
so that

(@), = —ie|(K — iw’) = (a, (10.4.22)
{aa*y — (a)la*) = N (10.4.23)
@) — (@) = (@ — (a*)? =0

and the time-dependent solution for the mean is
K .,
{a(t)) = {a(0)) exp [— (-2— — i ) t]

-l ol (5- ) )

The stationary distribution in the P-representation is a Gaussian with variance
N and mean given by (10.4.22). If ¥ is small, this represents a density matrix p cor-
responding almost to that of the pure coherent state |a,) {a,|. Thus, a good
approximation to a coherent state is provided by a classical driving field, interacting
with a harmonic oscillator which interacts with a low temperature bath.

d) Driving by a Fluctuating Field
Suppose in (10.4.19) ¢ is a function of time &(¢), possibly stochastic. The Langevin
equation for @, a* is

da(t) = [—((K — iw")a(t) — ie(2))dt + \/Izz_v[dW,(t) + idW,(t)]. (10.4.25)

Since &(¢) occurs linearly and multiplied by a constant, we can make some simple
stochastic assumptions.
The simplest is to take the short correlation time limit and replace

e(t)dt = g dt + \/ % [AW3(t) + idW4(1)]

which gives independent fluctuations in each component [since the coefficient of
&(2) is constant, there is no Ito-Stratonovich ambiguity]. The net effect is to modify
(10.4.21) by the replacement

KN — KN+ f, (10.4.26)

that is, the extra noise simply increases the thermal noise already present.
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Alternatively, equations of motion for &(z) may be assumed and solved in
conjunction with the stochastic differential equation (10.4.25),

10.4.2. The Driven Two-Level Atom

An idealisation of atomic systems is the two-level atom which may exist in either
of two states. We set up a matrix formalism with the matrices

0
|—> = [ ] ground state
1 (10.4.27)

1
|+> = [0] excited state.

The system can make transitions which are described by the Pauli matrices

01 00 1 0
St = [ ], S-= [ ], S, = [ } . (10.4.28)
00 1 0 0 —1

Thus, S* lifts the atom to the excited state, S~ drops it to the ground state. The
Hamiltonian for the system in interaction with a radiation field and a driving field
E(t) can be written as

H; = hw,S, — shd[S*E(t) + S~E*(2)]
H, =3 [g.S%a, + g*S™a"] (10.4.29)

H, = X ho(afa; + 1) .

Physically, the term }#w,S, assigns energy }#w, to the excited state, —i#iw, to
the lower state, the energy of excitation thus being Aw,. The second term in H,
represents the coupling through a dipole moment d of the driving field to the atom
and is of essentially the same form as H,, in which, however, all the other modes
i are quantised. The modes i are to be thought of as representing photons of energy
hw, travelling in various different directions labelled by i, whereas the driving field,
which is a strong classical field, is in a single particular direction.

The quanta of the radiation field provide the heat bath. Thus we use a, for ;.
The heat bath can, in principle, be at any temperature, but is normally at essentially
zero temperature in experimental situations. We shall preserve a nonzero tempera-
ture T.

The driving field E(z) is assumed to have the same frequency w, as that required
to excite the atom: thus, we write

E(t) = ¢ emioor (10.4.30)

It is best here to work in the interaction picture which removes the rapid oscillations.
Define
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(1) = exp (%’ s,z) pexp (— I%’S,t). (10.4.31)

Then we can describe the motion of 5(¢) by the Hamiltonians

H, = —3hd(S*e + S-¢%)
H, = 3 (g, @0 S*a, + gFe-®0S=a}) (10.4.32)
i

H, = 3 hofata, + 1) .

The reader may check that all derivations go through in exactly the same way as in
Sect. 10.3.3, with the difference that we make the the replacement

81— g% (10.4.33)

which means that the y(¢) are now defined exactly as in (10.3.9). Thus, the explicit
exponential time dependence does arise here as a result of the free motion of the
atom.

The master equation becomes, for 5, the reduced density matrix (in the interaction
picture), after using the algebra corresponding to the explicit forms of the matrices
(10.4.28),

P — yidis*ex + 572, p)

+ $K(1 + N)[2S-pS* — 4(1 + S)p — 3p(1 + S,

+ §KN[2S*5S™ — $(1 — S.)p — $p(1 — S (10.4.34)
We cannot use coherent states here, since the S*, S, operate in a two-dimensional
space and are not harmonic oscillator operators. The density matrix is a 2 X 2
matrix with unit trace and is completely specified by the quantities Tr {pS%}, Tr {pS.},

which are the expectations of the operators. Hence, we derive as a complete speci-
fication of p(z),

& (5% = —3KQN + 1)(S*) + ide(S.
di‘; (57> = —3KQN + 1){S-Y — ide (S, (10.4.35)
D (55 = —K@F + 1)(S) — K + Jide*(S™ — &(57).

These equations have been investigated in detail by Carmichael and Walls [10.6].
We note a few points.
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a) Stationary Solution with ¢ = 0

Here,
§*H =<5 =0
1
So=—2m+1°

Setting N = (e*/*T — 1)~ gives the correct Boltzmann distribution.

b) Temperature Dependent Relaxation

(10.4.36)

In contrast to the harmonic oscillator, the relaxation rate is proportional to 2N + 1
which depends on temperature. The difference in operator algebra leads to this.

¢) Comparison with Bath Temperature

If we explicitly evaluate the quantities K, N, 6, &, using (10.3.12) and related forms,

we find
KN + i6 = 1 [ dt e [ dew S(w) (nlw, T)) e'o* .
0 )
We note the identity

[de If(ﬂ)e“"‘ = n f(0) + i {dQ f(Q)Q,

(10.4.37)

(10.4.38)

where § represents the Cauchy principal value of an integral containing 1/Q. Hence,

SKN + i6 = nh?S(wo) (e, T)) + if* f do S(@)n(w, T)y(w—awg). (10.4.39)

Similarly,
JK(N + 1) + 6" = nhS(we){n(we, T) + 1)

+ i }dw S(w)n(w, T) + 1) (@ — wo)™

which is the more usual form for the damping constants.
From these equations, one notes

K = 2nh*S(w,)
N = (n(wo, T)) = [exp (howo/kT) — 1]

5+ 8 = 1 fdo S) (0 — 0 .
1)

(10.4.40)

(10.4.41)
(10.4.42)

(10.4.43)

Notice that (10.4.42) is consistent with (10.4.36), i.e., the atom comes to the same

temperature as the bath.
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d) Stationary Mean in Nonzero Field
We can solve (10.4.35) to obtain

—K*2N + 1)

. —idKe
(S =<(SH* = CON T 17 + 287" (10.4.45)

e) Connection with the Random Telegraph Process: the Einstein Equations
When E(t) = 0, we may define

P(+) =<+ 1pl+> (10.4.46)
P(=) =<{—lp|—>

and derive the Master equation for P(+) and P(—).

3.P(+) = —K(1 + N)P(+) + KNP(-)

_ (10.4.47)
9,P(—) = K(1 + N)P(+) — KNP(—).

These are identical to the equations for the random telegraph process of Sect. 3.8.5
Thus, the two-level atom can be regarded as a quantum random telegraph process.
However, if E(t) # 0, the off-diagonal matrix elements are also involved, giving a
truly quantum process.

Equations (10.4.47) were first introduced by Einstein [10.7] and are thus nowa-
days known as the Einstein equations. They demonstrate two effects, namely,

i) stimulated emission and absorption: terms proportional to N depend on the
number of photons in the radiation field and are called stimulated terms. Thus,
the processes of excitation (— — +) and de-excitation (+ — —), with a corres-
ponding absorption or emission of a photon, can occur as processes stimulated by
the number of photons already in the field.

i) Spontaneous emission: i.e., de-excitation (+ — —) occurs by the term KP(4)
occurring in both equations. De-excitation can occur even though no photons are
present. This is not surprising from a modern point of view, but was an important
innovation when first introduced.

10.5 Time Correlation Functions in Quantum Markov Processes

For a quantum system the two-time correlation function {(A(¢')B(¢)) can be easily
defined exactly: we simply state the result here. If p(?) is the density matrix at time
t (in the Schrédinger picture), H is the Hamiltonian and A4 and B are the operators
for the variables to be measured, then
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{A(t)) = Tr{Ap(t)) (10.5.1)
and
(A(t + 1)B(t)) = Tr{el#*4 e~ ¥ /*Bp(1)} . (10.5.2)

[The truth of (10.5.2) arises from the Heisenberg picture form, where it becomes
(A(t + DB()) = Tr{An(t + 1DBu(t)ps) (10.5.3)

where the Heisenberg density matrix pg is time independent.]

Equation (10.5.2) is exact, but not useful. In a quantum Markov system, we
want to express everything in terms of the Liouvillian for the reduced system, in
which heat bath variables have been traced out. When this has been done, we have
effectively defined multitime joint probabilities which enable us to specify the
quantum Markov process completely.

This can be achieved relatively simply. Supposing 4 and B are operators only
in the system space and not in the heat bath space. Then we can rewrite (10.5.3)
as

CAt + D)B(D)) = Trg{A Trg {e-mBp()em} ) (10.5.9)

(since A is proportional to the identity in the bath space).
The equation of motion for the term

X(z, t) = e iH/ Bp(1)eif/» (10.5.5)
in terms of 7 is
iho. X(z, t) = [H, X(z, t)] (10.5.6)

and in exactly the same way as we derived (10.3.38), which can be written abstractly
as

a,p(t) = Lp(2), (10.5.7)
for

p = Tra{p}, (10.5.8)

we can derive
:Trg {X(z, 1)}] = L[Trg {X(z, 1)}] (10.5.9)

so that (10.5.4) is equivalent, in this adiabatic limit, to

CA(t + 1)B(1))y = Tr,{A e&*Bj(1)} . (10.5.10)

e e————
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By using a similar procedure, general multitime correlations can be worked out,
e.g.,

CAW)B(L)C()) = Tr, (A et¥s—2 B et Cp(t) (10.5.11)

(in both of these, £ operates on everything to the right of it) and so on.

Since the operators do not all commute, the time ordering need not be the same
as the operator ordering. This allows a wide range of possbilities, not all of which
give simple formulae. A particular case that does turn up is the form

CA@)B(t + ©)C(t + 7)D(t)y = Tr{A eife/» BC e~#/* D p(t)}
= Tr, {BC Trg{e#7/* Dp(1)A eif*/*}}

so that

CA()B(t + 1)C(t + T)D(1)) = Tr,{BC et* Dj(t)A4} . (10.5.12)

Note that (10.5.10) is a special case of this, as by setting C(z) = D(t) = 1, we find

CA()B(t + 1)) = Tr, {B el j(t)A} (10.5.13)

The complete set of correlation functions for all possible operators defines all
possible joint averages and may thus be taken as a definition of the Markov
property in a quantum system in which £ can be any operator which preserves
Tr, {p} and the positivity of p. In particular, L as defined in (10.3.8) can be used
and is, in practice, the only kind of operator that does occur.

10.5.1 Quantum Regression Theorem

In the case where linear equations turn up for the means, we can develop a quantum
regression theorem, similar to that for an ordinary Markov process (Sect. 3.7.4)
This result was first derived by Lax [10.8].

Suppose for a certain set of operators Y, the Master equation can be shown to
yield for any initial p,

Y (1)) = 2 Gy(1) Y, (1)) . (10.5.14)
Then we assert that
0LY,(t + 7)Y, (1)) = ?.jl Gy(@XY,(t + D Yi(2)) . (10.5.15)

For
Yt +0Y,0) = Tr,{Y,eL’Y,p(t)} (10.5.16)




10.5 Time Correlation Functions in Quantum Markov Processes 405

and the right-hand side is an average of Y, at time ¢ + t with the choice of initial
density matrix

Puaie = Y 1p(2) . (10.5.17)

Since by hypothesis any initial p is permitted and the hypothesis is linear, we may
in fact, generate, any initial condition whatsoever. (It might be thought that the
requirement that 5 be hermitian and positive semidefinite could limit the available
initial conditions, but this is not so. For example, in two dimensions there are four
linearly-independent, positive semidefinite matrices with unit trace, namely,

Ll) O] [g (:] B ﬂ [—in %ﬂ (10.5.18)

which provide a basis for the space of all 2 X 2 matrices. This property generalises
straightforwardly to arbitrary dimensions). Hence, choosing p,,,, as defined in
(10.5.17), the hypothesis (10.5.14) yields the result (10.5.15) which is the quantum
regression theorem.

10.5.2 Application to Harmonic Oscillator in the P-Representation
We consider firstly the normally ordered time correlation function

{a*(t + 1)a(t)) = Tr{a*et’a [ d*a P(a,t)|a) {al|} (10.5.19)
= Tr{a*el* [ d?a aP(a, t)|a){a|} .
The term
el [ d’a aP(a, 1)|a){a|

is the solution of a generalised Master equation, for which the initial condition is
the operator whose P-representation density is aP(a, t). If a FPE corresponding
to L exists [e.g., (10.4.11) (10.4.21)] this quantity is the density matrix with P func-
tion given by

[ d*d'd' P(a, t + t|a’, )P(a’, 1) (10.5.20)
so that, using the cyclic property of the trace and {(a|a* = a*{«a|,

{a*(t + D)a(t)) = Tr{a* [ d*add’a’P(a, t + t|d’, t)P(d’, t)| ) {a]|}
= I d*ad?*d’a*a’P(a, t + t;a't),

this means that

(a*(t + Da(t)y = {a*(t + ta(t)) (10.5.21)
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where a(t) is the P-representation stochastic variable. Similarly, for any function of
a* and a,

(Fila*(t + D)F[a@)]) = <Fila*( + D]Fe(@)]) . (10.5.22)

For non-normally ordered products, the answer is not so simple.
For example, consider

(a*(t + 7)a(t + 7)a*(t)a(t)) = Tr{a*a er*a*a [ d*a P(a, t)|a){a|}; (10.5.23)
using the operator identities of Sect. 10.2.3 (10.2.26)
=Tr [a+a et | d’a [ (a* - (%) «P(a, z)] e (al} (10.5.24)

and proceeding with the same argument as above,

= Trla*a [ d% [ da’P(ayt + 7|, z)[ (a'* - 9-) «P(d, x)]|a><a|} (10.5.25)

da’

and finally, using the same operator identities,

- fdzadza’[(a* — é‘%) aP(a, t + 7|, t):][(a'* - a%) a’P(a’,t)]. (10.5.26)

To simplify, we may drop the 9/da since it integrates to zero, and integrate the d/da’
by parts, so that

(10.5.26) = [ d*ad?d/(a*a)(a’*a')P(a, t + T; , 1) (10.5.27)

+ [ d*a'P(, 1)’ 5% [ d*a(a*a)P(a, t + |, 1)] (10.5.28)

which can be rewritten as

(a*(t + Da(t + Da*(Da(t)) = {|at + D) [*|a()|*)

5 ) (10.5.29)
+ <@ 5 <late + D) 1P|, 1)

which is in close analogy to the Poisson representation result (7.7.76). In fact, if the
P function depends only on |a|? and |a’|?, they are identical, with the change
from |a|? (P-representation) to a (Poisson representation).

A measurement of more interest is the correlation function

{a*(t)a*(t + 7v)a(t + 1)a(t)) = G¥(z, t) (10.5.30)

e e P s
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which has been shown by Glauber [10.1] to be what is measured when one correlates
intensities of light received at different times by a detector.
We use (10.5.12) to write

G*(t, t) = Tr{a*a et"apa*} (10.5.31)

which, by similar reasoning to the above, yields

G(z, t) = [ d*ad’d | a*| || P(a, t + 75 &, 1)

(10.5.32)
= (|t + D)|?|a()|> .

This particularly simple result means that the measured intensity correlation func-
tion G*(t, t) is the same thing as the corresponding correlation function for the
P-representation variables, and that it is not the same thing as (10.5.29),

Example: Driven Damped Oscillator. from Sect. 10.4.1c we have the stochastic
differential equation for @ — a,:

da — @) = —(3K — i’} — a)dt + /KR dnt)

(with d = dn** = 0, dndn* = dt).
Hence, define

I=|(a — a)|
so that, using Ito’s formula

dl = —KIdt + /k§ [(@a — a.)*dn + (@ — a)dn*] + KN dt

and
LI-.} _— — N — NV
= K(I)—-N) .

Thus, <= N obeys a linear equation and the quantum regression theorem can be
applied, i.e., in the stationary state

dOIO)-N* = e XI5~ N?) .

We use the Gaussian nature of the stationary distribution in a (¢),a*(?) to note that
TH =P+ =t 4229 +yH  (here a—a,=x+iy)

and x and y are independent in the stationary state [from (10.4.23)] so, using (2.8.6),

I = (I)*=2N?,




408 10. Quantum Mechanical Markov Processes

ie.,

T IO, = G*(t); = N*(1+e~ X" . (10.5.33)

More simply,

(a*(t)a(0)), = GX(t), = N exp[— (K + iw)t]. (10.5.34)

10.5.3 Time Correlations for Two-Level Atom

These provide perfect applications of the regression theorem and are quickly
deduced from Sect. 10.4.2. For simplicity, we consider only the stationary correla-
tion functions:

(S*(S*O)),  SHOST(0), (S*()S.(0).
G(1) =|<ST(DS*O)s  ST(DSO),  <S7(1)S0), | (10.5.35)
(SANS*O)s  SAST(0),  (S:(1)S0)).

then
—3KQN + 1) 0 ide
dgt(t) - 0 —JKQN+1)  —ide* G(). (10.5.36)
}ide* —lide —KQN +1)

This matrix equation can be integrated and the complete solution given. The initial
condition is simplified by the algebra of the matrices (10.4.28) to

0 %<1 + Sz>s '—<S+>s
G0) = | i1 — S.), 0 (ST, (10.5.37)
5%, —<{87), 1

and the stationary values have already been given in Section 10.4.2 The problem of

the correlation function and spectrum has been explicitly deduced by Carmichael
and Walls [10.6).

10.6 Generalised P-Representations

The idea of representing a density matrix as a linear combination of coherent state
density matrices, as in the Glauber-Sudarshan P-representation, is particularly
useful in quantum systems described by Bose operators a* and a, since an inter-
pretation of quantum Master equations in terms of ordinary stochastic processes is

—c -

-——————-—-—-——-—J
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only possible this way. This contrasts with the Poisson representation, which
merely transforms a birth-death stochastic process into a diffusion process.

Despite the formal similarity to a classical probability distribution, the function
P(a) isnot a true probability distribution but belongs to a class of quasiprobability
distributions. While P(a) exists for thermal light fields (a Gaussian distribution-
see Sect. 10.4.1) and coherent laser fields (a 8 function distribution), for fields with
nonclassical photon statistics, P(a) does not necessarily exist as a well-behaved posi-
tive function (although Klauder and Sudarshan [10.3] have shown that it does exist
in terms of extremely singular distributions). Such nonclassical fields have been
observed in experiments on atomic fluorescence. Alternative quasiprobability
distributions which avoid some of the problems of the P-representation exist. The
Wigner function which was the first quasiprobability method, may be obtained
from the P-representation by the following integral:

W(a) = 2 [ P(B) exp(— 2| B — a|Dd*B . (10.6.1)

The Wigner function always exists as a nonsingular function but may assume
negative values. The Wigner distribution simplifies averaging symmetrically-
ordered operator products but is less convenient for averaging the usual normally-
ordered operator products.

An alternative representation which is always positive is the Q-representation
or diagonal matrix elements of the density operator in terms of the coherent states:

(e, a*) = {a|p|a) . (10.6.2)

Though this representation is positive, it has the disadvantage that not every posi-
tive Q function corresponds to a positive semidefinite Hermitian density operator.
In addition, evaluating moments is only simple in the Q-representation for antinor-
mally-ordered operator products.

Glauber defined an R-representation by means of the operator expansion given
in Sect. 10.1.2e:

R(a*, p) = {a|p| B> exp (3 |«|* + £]81*)

1 (10.6.3)

p =] |a) R@*, B)XB| exp [—4(|a|* + | B|*))d*ad*f .
While the representation is analytic in a*, # (and therefore nonsingular), it is also,
by definition, nonpositive and has a normalization that includes a Gaussian weight
factor. For this reason, it cannot have a Fokker-Planck equation or any direct
interpretation as a quasiprobability. Nevertheless, the existence of this representa-
tion does demonstrate that a calculation of normally-ordered observables for
any p is possible with a nonsingular representation.

10.6.1 Definition of Generalised P-Representation

In order to treat problems in nonlinear quantum optics where nonclassical photon
statistics arise, a class of generalized P-representations was introduced by Drum-
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mond and Gardiner [10.9] by expanding in nondiagonal coherent state projection
operators. The methods used are very similar to those used for defining various

Poisson representations in Sect. 7.7. The generalised P-representations are defined
as follows. We set

p= gj A(a, B)P(a, B)dul(a, p), (10.6.4)
where
_ lex<{B*|
A(a, p) = Brad (10.6.5)

du(a, B) is the integration measure which may be chosen to define different
classes of possible representations and & is the domain of integration. The pro-
jection operator A(a, fB) is analytic in (a, f).

Useful choices of the integration measure are:

a) Glauber-Sudarshan P-Representation

du(a, p) = 8*(a* — p) d*ad?p (10.6.6)

This measure corresponds to the Glauber-Sudarshan P-representation.

b) Complex P-Representation
du(a, B) = da dp (10.6.7)

Here, (a, p) are treated as complex variables which are to be integrated on individual
contours C, C'. The existence of this representation under certain circumstances is
demonstrated in the next section. In particular, this representation exists for an
operator expanded in a finite basis of number states. This is a characteristic
situation where nonclassical photon statistics (photon antibunching) may arise,
and where the Glauber-Sudarshan P-representation would be singular. This re-
presentation is called the complex P-representation since complex values of P(a,f)
occur. It gives rise to a P(a, ) which can be shown to satisfy a FPE obtained by
replacing (a, a*) with (, B) in the usual Glauber-Sudarshan type of FPE.

Under certain circumstances, exact solutions to Fokker-Planck equations occur
which cannot be normalized as Glauber-Sudarshan P-functions. These can be
handled with the present representation by choosing C, C’ (paths of integration)
in the complex phase space of (a, 8).

c) Positive P-Representation
du(e, p) = d*ad’p

This representation allows (a, ) to vary independently over the whole complex
plane. In the next section we will show that P(a, f) always exists for a physical
density operator and can always be chosen positive, in which case we call it the
positive P-representation. This means that P(e, B) has all the properties of a
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4 genuine probability. It will also be shown that provided any FPE exists for time
development in the Glauber-Sudarshan representation, a corresponding FPE
exists with a positive semidefinite diffusion coefficient for the positive P-representa-
tion. This enables stochastic differential equations, and a correspondence between
the quantum Markov process and ordinary diffusion processes to be derived.

In all representations, it is, of course, true that observable moments are given by

(a*)ya™y = ; du(e, B)Bra"P(a, B) . (10.6.8)

10.6.2 Existence Theorems
We will show in this section that the generalised P-representations have quite strong

existence properties. We do this with a number of theorems. NB: for brevity, we
shall use the notation

Theorem 1: A complex P-representation exists for an operator with an expansion
in a finite number of number states.

Proof: Let
p= Z"}"Z Com(at)y"|0>{0]a" . (10.6.9)

Then, by Cauchy’s theorem,

p=§§ M@P@du(a) (10.6.10)
with
P(a) = (--1/4n®)e*t 33 C,pp nlmla™ 1 g1 (10.6.11)

where C, C’ are integration paths enclosing the origin.

Theorem 2: A complex P-representation exists for any operator with an expansion
on a bounded range of coherent states, i.e., for

p=| _[D'A(a, B)C(a, f)d*ad?B, (10.6.12)

D,
where D, D’ are bounded in each complex plane.

Proof: Application of Cauchy’s theorem shows that if

Plg) = — %zf D_Ipp(a', B)l(@ — &XB — pld*ad’f’ , (10.6.13)
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then

p=[] Al@P(@)dadp, (10.6.14)

where C, C’ enclose D, D’ respectively. Hence, the complex P-representation exists
in this case relative to any bounded expansion in coherent state projection opera-
tors.

Theorem 3: A positive P-representation exists for any quantum density operator
p, With

P(g) = (1/4n*) exp (— |a — B*|*/4){4(a + B*)| plia + B*)) - (10.6.15)

Proof: P(g) is positive, since p is a density operator, and it is composed of a diagonal
matrix element multiplied by a positive function. In order to show that this repre-
sents a quantum density operator in the general case, the characteristic function

x(A) = Tr{p et e-2*9) (10.6.16)

is used. This has been shown in Sect. 10.2.5 to define the density operator uniquely.
In terms of the R-representation for j, the characteristic function is

2 =L [ R@*, 1+ @) exp (—1%a — |a|Dd% . (10.6.17)

We now substitute the R-representation for p into (10.6.15) which defines P(a)
in terms of the diagonal matrix elements of p. We then define p; to be given by the
positive P-representation form (10.6.4) with P(g) as given by the previous process,
calculate the corresponding characteristic function y (1) using (10.6.16) and show
that this is the same as the original characteristic function for p. Thus:

x2(x) = [[ P(2) exp (A8 — A*a)d?ed?B
— g [ RG*, ) exp 1B — Aa — }lal* — §1B1* — |]2 — |B']?
+ 3f'*(a + B*) + ta*(a* + PB)ld*ad?fda’d*p’ .
We now make a variable change by defining

y=(a+B82 do=(a— M2
a=(y+0) B* =@y — d) (10.6.18)
d2ad?f = 4dyd?s .

Noting that R is an analytic function, the following identify is useful:
R(a*,y) = ',tl- [ R(e*, B) exp (vp* — |B1)d*B . (10.6.19)

Hence, the above expression for the characteristic function can be simplified to
give

e ————P———

WE P
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xe() = 5 [[[ R@*, y) exp [A(y — 8)* — 2*(y + )

—1p|> = |8]% — |&'|* + a'y*ld¥yd?*od%’ (10.6.20)
= L [JR@*, ) exp (121> + A* — a*y — |y[?
—|a’|? + a'y¥)d*yd? (10.6.21)
=L [R@*, 2+ o) exp (—1%a — |a|)d% . (10.6.22) ‘
Hence, i
xp(A) = Tr{ped*e=2*} = x(1). (10.6.23)

The last step follows from the identity with the characteristic function defined
relative to the R-representation in (10.6.17), Thus, we deduce that pp = p.

10.6.3 Relation to Poisson Representation

Given a probability distribution g(x) over the integers, we can always define a
corresponding positive density matrix by

=2 Im {nlq(n) (10.6.24)

and a P-representation for p gives the corresponding Poisson representation for
P(n); thus,

1ap<p*|

q(x) = <x|p|xy = (x| [ dule, f)P(a.f) i~ B> | x> (10.6.25)
= [ du(a, p)=—35 (aﬂ Y P(a, ). (10.6.26)
Hence, one can write
q(0) = [ du(a)flen) = (10.6.27)
with
S )dulen) = [ du(a, Yo ,(af — a)P(a; ) (10.6.28)
and J,(a, — a,) is a Dirac delta function defined with respect to the measure x(a,),
i.e.,
,[ d/‘(al)‘sp(a'l — a))d(ey) = ¢(ﬂ'z) . (10.6.29)

\ |



414 10. Quantum Mechanical Markov Processes

Thus, we can deduce from Theorem 3 that a positive Poisson representation always
exists, as asserted in Sect. 7.7.4. The first theorem can also be adapted to show that
a complex P-representation always exists if g¢(x) = O for x > N, for some finite N.
However, a more general result has already been proved in Sect. 7.7.3.

10.6.4 Operator Identities

From the definitions (10.6.5) of the nondiagonal coherent state projection opera-
tors, the following identities can be obtained. Again, g is used to denote (a, f):

ad(g) = aA(g)

a*A(g) = (B + 9/da)A(a) (10.6.30)
A(@)a* = pA(a)

A(a)a = (8/0f + a)A(a) .

By substituting the above identities into (10.6.4) defining the generalised P-represen-
tation and using partial integration (provided the boundary terms vanish), these
identities can be used to generate operations on the P-function depending on the
representation.

a) Glauber-Sudarshan P-Representation
The same results as (10.2.26).

b) Complex P-Representation

ap < aP(g)

a*p — (B — 0/0a)P(2) (10.6.31)
pa* « BP(q)

pa — (a — 3/3f)P(z)

c) Positive P-Representation
We now use the analyticity of A(a, #) and note that if

G (10.6.32)
B=B.+1iB,,
then
(8/0a)A() = (3/3a,)A(g) = (—id/da,)A(g) (10.6.33)
and
(8/0p)A(2) = (9/0B.)A(2) = (—i9/3B,)A(2) (10.6.34)

so that as well as all of (10.6.31) being true in this case, we also have
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a*p > (B — 9/0a,)P(q) < (B + i0/0a,) P(2)

. (10.6.35)
pa < (a — 3/3B)P(g) < (a + i9/3B,)P(a) .

All these correspondences can now be used to derive Fokker-Planck equations

when appropriate.

10.7 Application of Generalised P-Representations to
Time-Development Equations

We firstly want to show that the Glauber-Sudarshan P-representation will not
always yield an acceptable Fokker-Planck equation, and that realistic situations
arise in which this is the case.

Consider a coherently driven single mode interferometer with a nonlinear
absorber, for which we set [10.9]

H] . Zha),(r}*r; + %) (10.7.1)
i

H, = 3 (@Y ed + a’g*I'{] (10.7.2)

H, = ho(a*a 4 1) + ih(ee™®at — &* e'¥fq) . (10.7.3)

This is much the same as the example treated in Sect. 10.4.1. In an interaction pic-
ture, we get the Master equation (assuming a zero temperature heat bath) and
using (10.3.38),

g_f = [ea* — e*a, p] + K[20°p(a*)* — (@V'a’p — p(a*)a®]. | (10.7.4)

Using the ordinary Glauber-Sudarshan operator correspondences, we would obtain
—(?—P(a a¥) = [— 9 (e — Ka%a*) — } 0 (Ka?) 4+ comp. conj ] P(a,a*). (10.7.5)
ot ’ oa da? ) ’ Sl

In terms of real variables,

=(a+a%)/v/2
y=(a—aMiv2.

The diffusion matrix is

S

_x K2 (10.7.6)

which is not positive semidefinite. Hence, a time development equation of the form
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(10.7.4) will develop singularities. We are lead, therefore, to alternative equations
in the various P-representations.

Naively following the rules which would apply if there was a positive
semidefinite diffusion matrix leads to the stochastic differential equations

d e ¢ — Kaota* . [e6(@)
dt H N L — K(a*)Za] M [a*éz(t)] ’ S

where &,(¢) and &,(¢) are independent white noises. However, a paradox arises.
Because &, and &, are independent, @ and a* do not remain complex conjugate.
We are lead to a similar situation to that of the Poisson representation, where
negative diffusion matrices also turn up.

We will show that (10.7.7) is, in fact, correct, provided we make the replacement
a* — B and they are regarded as variables of the positive P-representation.

10.7.1 Complex P-Representation

Here the procedure yields a very similar equation to that for the Glauber-Sudarshan
case. We assume that, by appropriate re-ordering of the differential operators,
We can reduce the quantum mechanical master equation to the form [where (a, f)
=ag=(a?, a?®);u=1,2:

R
[

J;J; 8P(a)a, dp

i, (4@ 3% + 1D7(0) 3% 1| 4@ P . (10.7.8)

We now integrate by parts and, if we can neglect boundary terms which may be
made possible by an appropriate choice of contours C, C’, at least one solution is
obtained by equating the coefficients of A(a):

agga) _ [_ %A#(g) + 53% ai' Dw (g)] P(e). (10.7.9)

This equation is sufficient to imply (10.7.8), but is not a unique equation becuase the
A(a) are not linearly independent. It should be noted that for this complex P-
representation, A4(e) and D#*(g) are always analytic in g; hence, if P(e) is initially
analytic, (10.7.9) preserves this analyticity as time develops.

10.7.2 Positive P-Representation

We assume that the same equation (10.7.8) is being considered but with a positive
P-representation. The symmetric matrix can always be factorised into the form

D(a) = B(2)B™(a) - (10.7.10)

—
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We now write

A() = A,(a) + i4,(2) (10.7.11)
B(2) = B.(2) + iB,(2), (10.7.12)

where 4,, A4,, B,, B, are real. We then find that the Master equation yields
2 — [f d*ad*pA(e) @P(@)fo1)
= [ P(@)[442)3; + A4 + 4(BuBra0;
+ BwBoa, + 2BwBra:a)| A(@)d%ad?f . (10.7.13)

Here we have written, for notational simplicity, 9/0a% = 0, etc, and have used
the analyticity of A(e) to make either of the replacements

0/0a* < 3} — —id;, (10.7.14)

in such a way as to yield (10.7.13). Now, provided partial integration is permissible,
we deduce the FPE

dP(g)[ot = {—0;44e) — 33A4(a) + $[0;33B4(2)By"(2)
+ 20;0}B%(2)By’(a) + 9;0%B4°(2)By(2)]} P(a) - (10.7.15)

Again, this is not a unique time-development equation but (10.7.13) is a conse-
quence of (10.7.15)

However, the FPE (10.7.15) now possesses a positive semidefinite diffusion
matrix in a four-dimensional space whose vectors are

@®, 2@, a, a?) = (a,, Bs» @y, B,) - (10.7.16)
We find the drift vector is
H(2) = (4"(2), 4P(2), 4"(2), AP (2)) (10.7.17)

and the diffusion matrix is

P) [BXEI, &BE]( ) = B(@)F(a) (10.7.18)
@) = = ’ o
®= BB, BB Y= TOTE
where
o [gx, 0 ) (10.7.19)
g N .-B.Va 0](‘@ -

and & is thus explicitly positive semidefinite (and not positive definite). The cor-
responding Ito stochastic differential equations can be written as
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d[e:]  [4@)]  [BJa)E0)
dr LYJ B {A,(g)] + [ By(é_f)é‘(t)] ’ (10.7.20)

or recombining real and imaginary parts,
daldt = A(e) + B(2)() . (10.7.21)

Apart from the substitution a* — g, (10.7.21) is just the stochastic differential
equation which would be obtained by using the Glauber-Sudarshan representation
and naively converting the Fokker-Planck equation with a non-positive-definite
diffusion matrix into an Ito stochastic differential equation.

In our derivation, the two formal variables (a, a*) have been replaced by
variables in the complex plane (e, f) that are allowed to fluctuate independently.
The positive P-representation as defined here thus appears as a mathematical
justification of this procedure. The procedure used closely parallels that of Sect.
7.7.4. on the positive Poisson representation.

10.7.3 Example

We consider the example of Sect. 10.7. Using the appropriate operator correspond-
ence, the complex P-representation FPE is

0P §) = [~ & — Keth) — + Zi(ke) — 2 — Kap?
13,
— 7 55 KB P(@, ). (10.7.22)

Rather miraculously, we see that this FPE satisfies potential conditions of Sect.
5.3.3. For, in that notation,

¢ — KaB —Ka&* 0
A= [ J , B= [ ] (10.7.23)
¢ — K 0 —Kp

so, using (5.3.22,23),

5 [s/az — KB+ K/aJ
Z=—— ’
K |e/p* — Ka + KB
%ZBE - %Zf‘; 2 (10.7.24)
and
#a, ) = —[ (Zoda + Zdp)
_(1 1

2 (5 + /3) + 2 log (aB) — 2aB, (10.7.25)

SR >
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so that

Py(a, B) = (af)~* exp [Zaﬂ 4 i—e (& + —},;) ] . (10.7.26)

The only acceptable contours for this stationary distribution are C, C’ which are
independent contours in the @ and g planes which encircle the essential singularities
ata=0and §=0.

A potential solution of this kind is extremely useful and could not be obtained
with the Glauber-Sudarshan P-representation. The moments can be obtained
from

[] da dB Bmar(aB)~? exp [Za/i’ 12 (5 n %)] (10.7.27)

and we can expand exp(2af) in power series and contour integrate term by term,
to obtain

@rey=5 &2

rin—r—Dl(m—r—1)!

(10.7.28)

which is an easily computed series.
Using the positive P-representation, we obtain the stochastic differential
equation

da] B [e — Ko?p bt ivE adW(t) 10.7.29
[d - e—Kam] K [ﬂsz(t)]' (107-29)

It should be noted that this equation does not contain any very obvious small
noise parameter. However, a large driving field limit can be obtained by setting

K = K&
a=a (10.7.30)
p=fo
so that
da) [1— Ka*f JE[@dW ()
LfﬁJ B [1 - E&Bz] di + i & {ﬁ' sz(t)] : (10.7.31)

A small noise linearisation process can be carried out in this limit of large driving
field and small nonlinearity which is, in fact, a situation of practical utility.




